

MUFFAKHAM JAH

COLLEGE OF ENGINEERING AND TECHNOLOGY

PC552EC

SYSTEMS AND SIGNAL PROCESSING LAB

(With effect from the academic year 2018-2019)

STUDENT’S MANUAL

DEPARTMENT OF

ELECTRONICS AND COMMUNICATION ENGINEERING

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 2

Vision and Mission of the Institution

Vision

To be part of universal human quest for development and progress by contributing high

calibre, ethical and socially responsible engineers who meet the global challenge of

building modern society in harmony with nature.

Mission

• To attain excellence in imparting technical education from the undergraduate through

doctorate levels by adopting coherent and judiciously coordinated curricular and co-

curricular programs

• To foster partnership with industry and government agencies through collaborative

research and consultancy

• To nurture and strengthen auxiliary soft skills for overall development and improved

employability in a multi-cultural work space

• To develop scientific temper and spirit of enquiry in order to harness the latent

innovative talents

• To develop constructive attitude in students towards the task of nation building and

empower them to become future leaders

• To nourish the entrepreneurial instincts of the students and hone their business

acumen.

• To involve the students and the faculty in solving local community problems through

economical and sustainable solutions.

Vision and Mission of ECE Department
Vision

To be recognized as a premier education center providing state of art education and

facilitating research and innovation in the field of Electronics and Communication.

Mission

We are dedicated to providing high quality, holistic education in Electronics and

Communication Engineering that prepares the students for successful pursuit of higher

education and challenging careers in research, R& D and Academics.

Program Educational Objectives of B. E (ECE) Program:

1. Graduates will demonstrate technical competence in their chosen fields of

employment by identifying, formulating, analyzing and providing engineering

solutions using current techniques and tools

2. Graduates will communicate effectively as individuals or team members and

demonstrate leadership skills to be successful in the local and global cross-cultural

working environment

3. Graduates will demonstrate lifelong learning through continuing education and

professional development

4. Graduates will be successful in providing viable and sustainable solutions within

societal, professional, environmental and ethical contexts

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 3

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND tECHNOLOGY

BANJARA HILLS, ROAD NO-3, TELANGANA

LABORATORY MANUAL

FOR

SYSTEMS AND SIGNAL PROCESSING LAB

Prepared by: Checked by:

 Approved by:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 4

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

ENGINEERING

(Name of the Subject/Lab Course): Systems and Signal Processing Lab

Code: PC552EC Programme: UG

Branch: ECE Version No: 1

Year : III Updated on: 24/7/18

Semester :V No. of Pages:

Classification Status(Unrestricted/restricted): Unrestricted

Distribution List :Department, Lab, Library, Lab Incharge

Prepared by: 1) Name : 1) Name :

 2) Sign : 2) Sign :

 3)Designation : 3) Designation :

 4) Date : 4) Date :

Verified by: 1) Name : * For Q.C Only

 2) Sign : 1) Name :

 3)Designation : 2) Sign :

 4) Date : 3) Designation :

 4) Date :

Approved by: (HOD) 1) Name:

 2) Sign :

 3) Date :

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 5

PC552EC With effect from Academic Year 2018-19

SYSTEMS AND SIGNAL PROCESSING LAB

Instructions 4 Periods per Week

Duration of University Examination 3 Hours

University Examination 50 Marks

Sessionals 25 Marks

PART-A (Experiments on Signal Processing)

1. DFT and FFT algorithm.

2. Linear Convolutions.

3. Circular Convolutions.

4. FIR filter design using different data windows.

5. IIR filter design: Butterworth and Chebyshev.

6. Interpolation and Decimation.

7. Implementation of multi-rate systems.

8. Time response of non-linear system.

9. Design of P, PI, PD and PID controllers (any two)

Part –B(Experiments on DSK and CCS)

1. Solutions of difference equations.

2. Impulse Response.

3. Linear Convolution.

4. Circular Convolution.

5. Study of procedure to work in real –time.

6. Fast Fourier Transform Algorithms :(DIT, DIF).

7. Design of FIR (LP/HP) using windows, (a) Rectangular, (b) Triangular (c)

Hamming window.

8. Design of IIR (HP/LP) filters.

Note:

1. 1.Minimum of 5 from Part A and 5 from Part B is mandatory.

1. 2.For section ‗B‘, MATLAB with different toolboxes like Signal Processing,

Signal Processing block set, and SIMULINK/ MATHEMATICA/ any popular

software can be used.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 6

SYSTEMS AND SIGNAL PROCESSING LAB

GENERAL GUIDELINES AND SAFETY INSTRUCTIONS

1. Sign in the log register as soon as you enter the lab.

2. Strictly observe your lab timings.

3. Strictly follow the written and verbal instructions given by the teacher / Lab

Instructor. If you do not understand the instructions, the handouts and the

procedures, ask the instructor or teacher.

4. It is mandatory to come to lab in a formal dress and wear your ID cards.

5. Do not wear loose-fitting clothing or jewelry in the lab

6. Mobile phones should be switched off in the lab. Keep bags in the bag rack.

7. Keep the labs clean at all times, no food and drinks allowed inside the lab.

8. Do not tamper with computer configurations.

9. Playing games on the computers is strictly prohibited.

10. Use of Internet during laboratory timings is prohibited.

11. Shut down the computer and switch off the monitor before leaving your table.

12. Handle the Trainer kits with care.

13. Don‘t plug any external devices/Pen drives without permission from lab staff.

14. Don‘t install any software without the permission of the lab Incharge.

15. Observation book and lab record should be carried to each lab.

16. Be sure of location of fire extinguishers and first aid kits in the laboratory.

17. Please take care of your personal belongings. Lab incharges /Staff are not

responsible for any loss of your belongings.

.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 7

List of Experiments Page

Part-(A) Experiments on signal processing.

1. DFT and FFT algorithm………………………………………...................09

2. Linear Convolutions……………………………………………………….20

3. Circular Convolutions……………………………………………………..29

4. FIR filter design using different data windows…………………………...37

5. IIR filter design: Butter worth, chebyshev-type 1 and 2

and Bilinear-transformation Methods……………………………………..51

6. Interpolation and Decimation……………………………………………..66

7. Implementation of multi-rate systems………………………………….....79

8. Time response of non-linear system………………………………………85

9. Design of PI and PID controllers…………………………………………88

Part-(B) Experiments on DSK and CCS

1. Solutions of difference equations…………………………………………79

2. Impulse Response…………………………………………………………82

3. Linear Convolution………………………………………………………..84

4. Circular Convolution……………………………………………………...87

5. Study of procedure to work in real- time………………………………….91

6. Design of FIR (LP/HP) using windows,(a) Rectangular ,

 (b)Triangular(c)Hamming window……………………………………93

7. Design of IIR (HP/LP) filters…………………………………………….103

8. Fast Fourier Transform Algorithms: (DIT, DIF)………………………...112

 Appendix-A…………………………………………………………………120

 Appendix-B………………………………………………………………….137

 Appendix…………………………………………………………………….145

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 8

PART – A

.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 9

EXPERIMENT- 01

DISCRETE FOURIER TRANSFORM

1.a) Discrete Time Fourier Transform

AIM: To perform the DTFT of a discrete time sequence and plot its magnitude and

Phase.

SOFTWARE: Matlab R2014a

THEORY: The Discrete time Fourier Transform is a Fourier transform that operates on

aperiodic ,discrete signals. Mathematically it is given by

ALGORITHM:-

 Read the input sequence x1[n] ,and plot

 Use the Matlab function ‗fft‘ to perform Fourier Transform

 Obtain Magnitude of Fourier Transform using Matlab Function ‗abs‘ and Plot

 Obtain Phase of Fourier Transform using Matlab Function ‗angle‘ and Plot

MATLAB PROGRAM:

clc;

clear all;

close all;
x1=input('Enter the equence:');

y1=fft(x1);

disp(‗y1=‘); disp(y1);

plot(x1);

 xlabel('Time---‗);

ylabel('Amplitude---->')

title('input sequence');

mag1=abs(y1);

figure;

plot(mag1);

xlabel('Time—>');

ylabel('Amplitude---->');

title('Magnitude Plot');

phase1=angle(y1);

figure;
plot(phase1);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 10

xlabel('Time--->');

ylabel('Amplitude ----‗);

title('Phase Plot');

Enter the sequence: [1 2 3 4]

y1 =

 10.0000 -2.0000 + 2.0000i -2.0000 -2.0000 - 2.0000i

OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 11

1.b)DISCRETE FOURIER TRANSFORM

AIM: To perform the DFT of a discrete time sequence and plot its magnitude and

Phase.

SOTWARE: Matlab R2014a

THEORY: Given a sequence of N samples x(n) , the discrete Fourier Transform

(DFT) is defined as X(k)

ALGORITHM:-

 Read the input sequence x1[n] ,and plot

 Use the Matlab function ‗fft‘ to perform Fourier Transform

 Obtain Magnitude of Fourier Transform using Matlab Function ‗abs‘ and Plot

using ‗stem‘ function

 Obtain Phase of Fourier Transform using Matlab Function ‗angle‘ and Plot using

‗stem‘

MATLAB PROGRAM:

clc;

clear all;

close all;
x1=input('Enter the sequence');

y1=fft(x1);

disp(‗y1=‘);

 disp(y1); stem(x1);

xlabel('Time--->');

ylabel('Amplitude----');

title('input sequence');

mag1=abs(y1);

figure;

stem(mag1);

xlabel('Time--->');

ylabel('Amplitude---->');

title('Magnitude Plot');

phase1=angle(y1);

figure;
stem(phase1);

xlabel('Time--->');

ylabel('Amplitude ----');

 title('Phase Plot');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 12

Enter input sequence [1 2 3 4 5 6 7 8]

y1 =

 Columns 1 through 5

 36.0000 -4.0000 + 9.6569i -4.0000 + 4.0000i -4.0000 + 1.6569i -4.0000

 Columns 6 through 8

 -4.0000 - 1.6569i -4.0000 - 4.0000i -4.0000 - 9.6569i

OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 13

1.c) DFT PERFORMED FOR 100 – POINTS

AIM:To perform the DFT of a discrete time sequence for 100 points and plot its

magnitude and Phase.

SOTWARE: Matlab R2014a

ALGORITHM:-

 Read the input sequence x1[n] ,and plot

 Use the Matlab function ‗fft(x1,100)‘ to perform Fourier Transform

 Obtain Magnitude of Fourier Transform using Matlab Function ‗abs‘ and Plot

using ‗stem‘ function

 Obtain Phase of Fourier Transform using Matlab Function ‗angle‘ and Plot using

‗stem‘

MATLAB PROGRAM:

clc;

clear all;

close all;
x1=input('Enter the sequence');

y1=fft(x1,100);

stem(x1);

 xlabel('Time—->);

ylabel('Amplitude---->');

title('First sequence');

mag3=abs(y1);

figure;

stem(mag3);

 xlabel('Time--->');

ylabel('Amplitude---->');

title('Magnitude Plot');

phase3=angle(y1);

figure;%open new window

stem(phase3);

 xlabel('Time--->');

ylabel('Amplitude ---->');

title('Phase Plot');

Enter the sequence [1 2 3 4 5 6 7 8]

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 14

OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 15

1.d)DISCRETE FOURIER TRANSFORM using FOR LOOP

AIM: To perform the DFT of a discrete time sequence using FOR Loop and plot its

magnitude and Phase.

SOTWARE: Matlab R2014a

THEORY: Given a sequence of N samples x(n) , the discrete Fourier Transform

(DFT) is defined as X(k)

ALGORITHM:-

 Read the input sequence x1[n] ,and plot

 Use the FOR loop Syntax to perform Discrete Fourier Transform

 Obtain Magnitude of Fourier Transform using Matlab Function ‗abs‘ and Plot

using ‗stem‘ function

 Obtain Phase of Fourier Transform using Matlab Function ‗angle‘ and Plot using

‗stem‘

MATLAB PROGRAM:

clc;

clear all;

close all;

a=input('Enter the sequence');

stem(a);

xlabel('Time--->');

ylabel('Amplitude---->');

title('input sequence');

N=length(a);

for k=1:N;

y(k)=0;

for i=1:N

y(k)=y(k)+a(i)*exp((-2*pi*j/N)*((i-1)*(k-1)));

end;

end;

k=1:N;

disp(‗the result is :‘);y

mag1=abs(y);

figure;

stem(mag1);

xlabel('Time--->');

ylabel('Amplitude---->');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 16

title('Magnitude Plot');

phase1=angle(y);

figure;

stem(phase1);

xlabel('Time--->');

ylabel('phase---->');

title('Phase Plot');

Enter the sequence [1 2 3 4 5 6 7 8]

OUTPUT:

y =

36.0000 -4.0000 + 9.6569i -4.0000 + 4.0000i -4.0000 + 1.6569i

-4.0000 -4.0000 - 1.6569i -4.0000 - 4.0000i -4.0000 - 9.6569i

OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 17

1.e)INVERSE DFT

AIM: To perform the Inverse DFT of a discrete sequence .

SOTWARE: Matlab R2014a

THEORY:

ALGORITHM:-

 Read the input sequence x1[n] ,and plot

 Use the Matlab function ‗fft‘ to perform Fourier Transform

MATLAB PROGRAM:

clc;

clear all;

close all;
x1=input('Enter the sequence');

y1=ifft(x1);

disp(‗y1=‘);

stem(abs(x1));

 xlabel('frequency--->');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 18

ylabel('Amplitude----

>'); title('magitde plot of

i/p‘)

figure

stem(angle(x1))

xlabel('frequency--->');

ylabel('Amplitude----

>'); title('Phase plot of

i/p‘)

stem(y1);

 xlabel('Time--->');

ylabel('Amplitude----

>'); title('Output

sequence‘');

Enter the sequence [10 -2+2i -2 -2-2i]

OUTPUT:

y1=

1 2 3 4

2

OUTPUT WAVEFORMS:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 19

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 20

EXPERIMENT- 02

LINEAR CONVOLUTION

2.a) AIM:To Perform Linear Convolution of two sequences.

SOTWARE: Matlab R2014a

THEORY:
 Linear Convolution can be represented by a Mathematical Expression

as follows:

 x[n]= Input signal Samples

 h[n]= Impulse response

 y[n]= Convolution output.

ALGORITHM:-

 Read the input sequence x1[n] ,and plot

 Read the input sequence x2[n] , and plot

 Use the user defined matlab function ‗conv‘

 Convolve the two sequence and plot the result

MATLAB PROGRAM:

clc;

clear all;

close all;

x=input('Enter input sequence');

h=input('Enter Impulse Response');

y=conv(x,h);
disp('Output of the system

is:'); disp(‗y=‘)

subplot(3,1,1);
stem(x); xlabel('time-->');

ylabel('Amplitude---->');

title('Input of the system');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 21

subplot(3,1,2);
stem(h);

 xlabel('Time---');

ylabel('Amplitude--->');

title('Impulse Response of the system');

subplot(3,1,3);
stem(y); xlabel('Time---

'); ylabel('Amplitude----

>');

title('Response of the system');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter input sequence[1 2 3 4]

Enter Impulse Response[5 6 7 8]

OUTPUT:

y = 5 16 34 60 61 52 32

OUTPUT WAVE FORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 22

2.b)AIM: DISCRETE LINEAR CONVOLUTION WITH DIFFERENT LOWER

AND UPPER LIMITS

SOTWARE: Matlab R2014a

THEORY:
 Linear Convolution can be represented by a Mathematical Expression

as follows:

 x[n]= Input signal Samples

 h[n]= Impulse response

 y[n]= Convolution output.

ALGORITHM:-

 Read the limits of input sequence x1[n] and x2[n]

 Read the input sequence x1[n] and x2[n] , and plot

 Use the user defined matlab function ‗conv‘

 Convolve the two sequence and plot the result

MATLAB PROGRAM:

clc;

clear all;

close all;
L1 = input('enter the lower limit of x');

U1 = input('enter the upper limit of

x'); x=input('Enter input sequence');

L2 = input('enter the lower limit of h');
U2 = input('enter the upper limit of

h'); h=input('Enter Impulse

Response');

y=conv(x,h);
disp('Output of the system

is:'); disp(‗y=‘);

 subplot(3,1,1);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 23

stem(L1:U1, x)

xlabel('time-->');

ylabel('Amplitude---->');

title('Input of the system');

subplot(3,1,2);

stem(L2:U2, h)

xlabel('Time--->');

ylabel('Amplitude---->');

title('Impulse Response of the system');

subplot(3,1,3);

stem(L1+L2: U1+U2,y)

xlabel('Time--->');

ylabel('Amplitude ---- >');

title('Response of the

system');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

enter the lower limit of x -1

enter the upper limit of x 2

Enter input sequence [4 3 2 4]

enter the lower limit of h -1

enter the upper limit of h 2

Enter Impulse Response [2 1 2 1]

OUTPUT of the system is:

y =

 8 10 15 20 11 10 4

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 24

OUTPUT WAVEFORMS:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 25

2.c) AIM: To Compute auto correlation of a discrete sequence

THEORY:
Autocorrelation can be represented by a Mathematical Expression as follows:

x[n]= Input signal Samples

 rxx[n]= Correlated output.

ALGORITHM:-

 Read the input sequence x1[n]

 Compute Autocorrelation using function ‗xcorr‘

 Plot the input sequence and correlated output

MATLAB PROGRAM:

clc;

clear all;

close all;

x1=input('Enter the Sequence');

x2=xcorr(x1);

disp('Auto Correlation is:');

stem(x1);

 xlabel('Time--->');

ylabel('Amplitude----

>'); title('First

sequence');

figure; % Opens new blank figure window

stem(x2);

xlabel('Time--->');

ylabel('Amplitude----

>');
title('Auto Correlation sequence');

 0, 1, 2,xx xx

n

r l x n x n l r l l

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 26

Enter the Sequence [1 2 3 4]

OUTPUT:
Auto Correlation is:

X2 =

4.0000 11.0000 20.0000 30.0000 20.0000 11.0000 4.0000

OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 27

2.c)AIM: To Compute Cross correlation of two discrete sequence

THEORY:
 Autocorrelation can be represented by a Mathematical Expression as

follows:

 x[n]= Input sequence

 y[n]= Second input sequence

 rxy[n]= Cross Correlated output.

ALGORITHM:-

 Read the input sequences x1[n] and x2[n]

 Compute cross correlation using function ‗xcorr‘

 Plot the input sequences and correlated output

MATLAB PROGRAM:

clc;

clear all;

close all;

x1=input('Enter First sequence');

x2=input('Enter second

sequence');

x3=xcorr(x1,x2);

disp(x3); % DISPLAYS THE VALUES OF x3

stem(x1);

xlabel('Time--->');

ylabel('Amplitude--->');

title('First sequence');

figure;

0, 1, 2,

0, 1, 2,

xy

n

xy

n

r l x n y n l l

r l x n l y n l

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 28

stem(x2);

xlabel('Time--->');

ylabel('Amplitude--->');

 title('Secondsequence');

figure;
stem(x3);

xlabel('Time--->');

ylabel('Amplitude----

>');
title('Cross Correlation sequence');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter First sequence [1 2 3 4]
Enter second sequence [2 1 2 1]

OUTPUT:

x3 =

1.0000 4.0000 8.0000 14.0000 15.0000 10.0000 8.0000

OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 29

EXPERIMENT- 03

CIRCULAR CONVOLUTION

3.a) AIM: To Compute Circular Convolution of two discrete sequence

SOFTWARE: Matlab R2014a

THEORY: x[n] and h[n] are two discrete sequences and circulation convolution is given

by

Steps for circular Convolution

Step1: ―Plot f[m] and h[−m]

 Subfigure 1.1 Subfigure 1.2

Step 2: "Spin" h[−m] n times Anti Clock Wise (counter-clockwise) to get h[n-m]

(i.e. Simply rotate the sequence, h[n], clockwise by n steps)

Figure 2: Step 2

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 30

Step 3: Pointwise multiply the f[m] wheel and the h[n−m] wheel. sum=y[n]

Step 4: Repeat for all 0≤n≤N−1

Example 1: Convolve (n = 4)

Subfigure 3.1 Subfigure 3.2

Figure 3: Two discrete-time signals to be convolved.

 h[−m] =

Figure 4

Multiply f[m] and sum to yield: y[0] =3

 h[1−m]

Figure 5

Multiply f[m] and sum to yield: y[1] =5

 h[2−m]

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 31

Figure 6

Multiply f[m] and sum to yield: y[2] =3

 h[3−m]

Figure 7

Multiply f[m] and sum to yield: y[3] =1

Matlab Program

clc;

 clear

all;

close all;
x1=input('enter the input sequence');

x2=input('Enter the second

sequence');
%To find the shorter sequence and it with zeros

n1=length(x1);

n2=length(x2)

; if (n1>n2)
x2=[x2,zeros(1,n1-

n2)]; else

x1=[x1,zeros(1,n2-

n1)]; end;

N=max(n1,n2);

%logic to find circular convolution

for n=1:N
y(n)=0;

for

i=1:N

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 32

j=n-i+1;

if(j<=0)

j=N+j;
end;

y(n)=y(n)+x1(i)*x2(j);

end;

end;

figure;

stem(x1);

xlabel('Time--->');

ylabel('Amplitude');

title('First equence');

figure;

stem(x2);

xlabel('Time--->');

ylabel('Amplitude');

title('second sequence');

figure;

disp('The circular convolution is'); disp(y);

stem(y);

xlabel('Time--->');

ylabel('Amplitude')

;
title('Circular convolution sequence');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter the input sequence [1 2 3 4]
Enter the second sequence [2 1 2 1]

OUTPUT:

N =
4

The circular convolution is

14 16 14 16

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 33

 OUTPUT WAVEFORMS

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 34

3.b)AIM:To perform linear convolution using circular convolution

SOTWARE: Matlab R2014a

THEORY:Circular convolution is only defined for finite length functions (usually,

maybe always, equal in length), continuous or discrete in time. In circular convolution, it

is as if the finite length functions repeat in time, periodically. Because the input functions

are now periodic, the convolved output is also periodic and so the convolved output is

fully specified by one of its periods.

 If length of input sequence x1 and x2 is N1 are N2 resp, then length of linear

convolution N1 +N2-1, and circular convolution is Max(N1,N2).

MATLAB PROGRAM:

clc;

clear all;

close all;
x1=input('enter the first sequence');

x2=input('enter the secondsequence');

n1=length(x1);

n2=length(x2;
x1=[x1,zeros(1,n2-

1)] ;

x2=[x2,zeros(1,n1-

1)] ;

N=length(x1);
for n=1:N;

y(n)=0;

for

i=1:N;
j=n-i+1;

if(j<=0);

j=N+j;

end

y(n)=y(n)+x1(i)*x2(j);

end

end

stem(x1);

figure;

stem(x2);

figure;

stem(y);
xlabel('Time--->');

ylabel('Amplitude')

;
title('Linear convolution sequence using circular convolution');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 35

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

enter the first sequence [1 2 3 4]
enter the second sequence [2 1 2 1]

OUTPUT:

x1 =

1 2 3 4 0 0 0

x2 =

2 1 2 1 0 0 0

k =

Columns 1 through 13

2 5 10 16 12 11 4 0 0 0 0 0 0

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 36

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 37

EXPERIMENT- 04

 FIR FILTER DESIGN USING DIFFERENT WINDOWS

4.a)AIM:To Plot the response of different window function.

SOFTWARE: Matlab R2014a

THEORY:

MATLAB PROGRAM:

clc;
clear all;

close all;

 n=65;
w1=window(@rectwin,n);

w2=window(@triang,n);

w3=window(@hamming,n);

w4=window(@hann,n);

w5=window(@blackman,n);

plot(1:n, [w1 w2 w3

w4,w5]); axis([1,n,0,1]);

legend('Rectangular window ','triangular window ','Hamming window

', 'hanning window' , 'Blackman window');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 38

Fig: Characteristics of different window functions

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 39

4.b) AIM: To design FIR Filters using Window functions

SOFTWARE: Matlab R2014a

THEORY:

Consider an FIR Filter of Order M

windowed FIR filter design procedure:

1. Select a suitable window function

2. Specify an ideal response Hd(ω)

3. Compute the coefficients of the ideal filter bk

4. Multiply the ideal coefficients by the window function to give the filter

coefficients

5. Evaluate the frequency response of the resulting filter

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 40

ALGORITHM:

 Get the order of the filter

 Get the cut off frequency

 use ‗ fir1 ‘& specific function to compute the filter coefficient

 Draw the magnitude and phase response

MATLAB PROGRAM:

FIR FILTERS USING RECTANGULAR WINDOWS

clc;

clear all;

close all;

% LPF WITH CUTOFF FREQUENCY 0.5pi ANDORDER =65

N=65;

wc=.5*pi;

b=fir1(N,(wc/pi),rectwin(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('low pass fir filter response with rectangular window ');

% HPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER

=64N=64;

wc=.5*pi;

b=fir1(N,(wc/pi),'high',rectwin(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('high pass fir filter response');

% BPF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 65

N=65;

wc1=.5*pi;

wc2=.6*pi ;

b=fir1(N,[wc1/pi

wc2/pi],'bandpass',rectwin(N+1));

 w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('band pass fir filter response');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 41

% BRF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 64

N=64;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi

wc2/pi],'stop',rectwin(N+1)); w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('band stop fir filter response');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 42

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 43

% FIR FILTERS USING HAMMING WINDOWS

clc;

clear all;

close all;

% LPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER = 65

 N=65;

wc=.5*pi;

b=fir1(N,(wc/pi),hamming(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('low pass fir filter response using hamming window');

% HPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER =

64 N=64;

wc=.5*pi;

b=fir1(N,(wc/pi),'high',hamming(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('high pass fir filter response using hamming window');

% BPF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 65

N=65;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'bandpass',hamming(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('band pass fir filter response using hamming window');

% BRF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 64

 N=64;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi

wc2/pi],'stop',hamming(N+1)); w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('band rejection fir filter response using hamming window');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 44

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 45

% FIR FILTERS USING HANNING WINDOWS

clc;

clear all;

close all;

% LPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER = 65

N=65;

wc=.5*pi;

b=fir1(N,(wc/pi), hanning(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('low pass fir filter response using hanning window');

% HPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER =

64 N=64;

wc=.5*pi;

b=fir1(N,(wc/pi),'high', hanning(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('high pass fir filter response using hanning window');

% BPF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 65

 N=65;
wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'bandpass', hanning(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('band pass fir filter response using hanning window');

% BRF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 64

N=64;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'stop', hanning(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('band rejection fir filter response using hanning window');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 46

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 47

% FIR FILTERS USING BLACKMANN WINDOW

clc;

clear all;

close all;

% LPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER = 65

 N=65;

wc=.5*pi;

b=fir1(N,(wc/pi),blackman(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('low pass fir filter response using blackmann window');

% HPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER =

64 N=64;

wc=.5*pi;

b=fir1(N,(wc/pi),'high',blackman(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('high pass fir filter response using blackmann window');

% BPF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 65

 N=65;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'bandpass',blackman(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('band pass fir filter response using blackmann window');

% BRF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 64

 N=64;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'stop',blackman(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('band rejection pass fir filter response using blackmann window');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 48

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 49

% FIR FILTERS USING BARTLETT WINDOW

clc;

clear all;

close all;

% LPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER = 65

 N=65;

wc=.5*pi;

b=fir1(N,(wc/pi),bartlett(N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('low pass fir filter response using blackmann window');

% HPF WITH CUTOFF FREQUENCY 0.5pi AND ORDER = 64

N=64;

wc=.5*pi;

b=fir1(N,(wc/pi),'high', bartlett (N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('high pass fir filter response using blackmann window');

% BPF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 65

N=65;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'bandpass', bartlett (N+1));

w=0:.001:pi;

H=freqz(b,1,w);

figure;

plot(w,abs(H));

title('band pass fir filter response using blackmann window');

% BRF WITH CUTOFF FREQUENCIES 0.5pi & 0.6pi AND ORDER = 64

N=64;

wc1=.5*pi;

wc2=.6*pi

b=fir1(N,[wc1/pi wc2/pi],'stop', bartlett (N+1));

w=0:.001:pi;

H=freqz(b,1,w);

plot(w,abs(H));

title('band rejection fir filter response using blackmann window');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 50

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 51

EXPERIMENT- 05

 IIR FILTER DESIGN

AIM: To Write a Matlab Program to design an IIR Filter.

SOFTWARE: Matlab R2014a

THEORY:

IIR FILTER DESIGN STEPS:

 Choose prototype analog filter family

 -Butterworth

 -Chebychev Type-I or II

 Choose analog –digital filter transformation method

- Impluse invariance

- Bilinear Transformation

 Transform Digtial filter specifications to equivalent analog filter specifations

 Design analog filter

 Transform analog filter to digital filter

 Perform frequency transformation to achieve highpass or bandpass filter,if

desired

ALGORITHM:

 Get the passband and stopband ripples

 Get the passband and stopband edge frequencies

 Calculate the order of the filter using ‗ buttord ‘ function

 Find the filter coefficients, using ‗butter‘ function

 Draw the magnitude and phase response

 BUTTERWORTH LOW PASS FILTER

clc;
clear all;

close all;
rp=input('Enter the pass band in db');

rs=input('Enter the stop band attenuation in

db');
fp=input('Enter the pass band cuttoff frequency in

hz'); fs=input('Enter the stop band cutoff frequency in

hz'); f=input('Enter the sampling frequency');

%Normalising frequency

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 52

wp=2*fp/f
ws=2*fs/f

% Order of filter & 3db cuttoff frequency

[N,wc]=buttord(wp,ws,rp,rs); disp('order

of the filter =');N
disp('cutoff frequency');wc

%coefficients of the filter

[b,a]=butter(N,wc,'low');

%Frequency Response

[H,om]=freqz(b,a);

%magnitude plot

plot(om/pi,abs(H));

title('Magnitude plot');

figure;

plot(om/pi,angle(H));

title('Phase Plot');

%magnitude plot in db figure;

plot(om/pi,20*log10(abs(H)));

title('Magnitude plot in db');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)
Enter the pass band in db5

Enter the stop band attenuation in db15

Enter the pass band cuttoff frequency in

hz1000 Enter the stop band cutoff frequency in

hz1500 Enter the sampling frequency10000

OUTPUT:

wp =

0.2000

ws =

0.3000

order of the filter =
N =

3

cutoff frequency

wc =
0.1786

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 53

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 54

% BUTTERWORTH HIGH PASS FILTER

clc;
clear all;

close all;
rp=input('Enter the pass band in db');

rs=input('Enter the stop band attenuation indb');
fp=input('Enter the pass band cuttoff frequency in

hz'); fs=input('Enter the stop band cutoff frequency in

hz'); f=input('Enter the sampling frequency');

%Normalising frequency

wp=2*fp/f

ws=2*fs/f

% Order of filter 3db & cuttoff frequency

[N,wc]=buttord(wp,ws,rp,rs);

disp('order of the filter =');N

disp('cutoff frequency');wc

%coefficients of the filter

[b,a]=butter(N,wc,'high');

%Frequency Response

[H,om]=freqz(b,a);

%magnitude plot

plot(om/pi,abs(H));

title('Magnitude plot');

figure;

plot(om/pi,angle(H));

title('Phase Plot');

%magnitude plot in db figure;

plot(om/pi,20*log10(abs(H)));

title('Magnitude plot in db');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter the pass band in db 5
Enter the stop band attenuation in db 15

Enter the pass band cuttoff frequency in hz

1500 Enter the stop band cutoff frequency in hz

1000 Enter the sampling frequency 10000

OUTPUT:

wp

=0.3000

ws =

0.2000

order of the filter =

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 55

N =

3

cutoff frequency

wc =
0.3321

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 56

% CHEBYSHEVE TYPE – 1 LOW PASS FILTER

ALGORITHM:

 Get the passband and stopband ripples

 Get the passband and stopband edge frequencies

 Calculate the order of the filter using ‗ cheb1ord ‘ function

 Find the filter coefficients, using ‗cheby1‘ function

 Draw the magnitude and phase response

MATLAB PROGRAM:

clc;

clear all;

close all;
rp=input('Enter the pass band in db');

rs=input('Enter the stop band attenuation in

db');
fp=input('Enter the pass band cuttoff frequency in

hz'); fs=input('Enter the stop band cutoff frequency in

hz'); f=input('Enter the sampling frequency');

%Normalising frequency

wp=2*fp/f
ws=2*fs/f

% Order of filter 3db cuttoff

frequency

[N,wc]=cheb1ord(wp,ws,rp,rs);

disp('order of the filter =');N

disp('cutoff frequency');wc

%coefficients of the filter

[b,a]=cheby1(N,rp,wc);

%Frequency Response

[H,om]=freqz(b,a);

%magnitude plot

plot(om/pi,abs(H));

title('Magnitude plot');

figure;

plot(om/pi,angle(H));

title('Phase Plot');

%magnitude plot in db figure;

plot(om/pi,20*log10(abs(H)));

title('Magnitude plot in db');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 57

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter the pass band in db 5
Enter the stop band attenuation in db 15

Enter the pass band cuttoff frequency in hz 1000

Enter the stop band cutoff frequency in hz 1500

Enter the sampling frequency 10000

OUTPUT:

wp =
0.2000

ws =

0.3000

order of the filter =
N =

2

cutoff frequency

wc =
0.2000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 58

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 59

% CHEBYSHEV TYPE -1 HIGH PASS FILTER

clc;
clear all;

close all;
rp=input('Enter the pass band in db');

rs=input('Enter the stop band attenuation in

db');
fp=input('Enter the pass band cuttoff frequency in

hz'); fs=input('Enter the stop band cutoff frequency in

hz'); f=input('Enter the sampling frequency');

%Normalising frequency

wp=2*fp/f
ws=2*fs/f

% Order of filter & 3db cuttoff frequency

[N,wc]=cheb1ord(wp,ws,rp,rs);

disp('order of the filter =');N

disp('cutoff frequency');wc

%coefficients of the filter

[b,a]=cheby1(N,rp,wc,'high')

;

%Frequency Response

[H,om]=freqz(b,a);

%magnitude plot

plot(om/pi,abs(H));

title('Magnitude plot');

figure;

plot(om/pi,angle(H));

title('Phase Plot');

%magnitude plot in db figure;

plot(om/pi,20*log10(abs(H)));

title('Magnitude plot in db');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter the pass band in db 5
Enter the stop band attenuation in db 15

Enter the pass band cuttoff frequency in hz

1500 Enter the stop band cutoff frequency in hz

1000 Enter the sampling frequency 10000

order of the filter = N =2

cutoff frequency wc = 0.2000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 60

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 61

% CHEBYSHEV TYPE – 2 LOW PASS FILTER

ALGORITHM:

 Get the passband and stopband ripples

 Get the passband and stopband edge frequencies

 Calculate the order of the filter using ‗ cheb2ord ‘ function

 Find the filter coefficients, using ‗cheby2‘ function

 Draw the magnitude and phase response

MATLAB PROGRAM:

clc;

clear all;

closeall;
rp=input('Enter the pass band in db');

rs=input('Enter the stop band attenuation in

db');
fp=input('Enter the pass band cuttoff frequency in

hz'); fs=input('Enter the stop band cutoff frequency in

hz'); f=input('Enter the sampling frequency');

%Normalising frequency

wp=2*fp/f
ws=2*fs/f

% Order of filter 3db cuttoff

frequency

[N,wc]=cheb2ord(wp,ws,rp,rs);

disp('order of the filter =');N

disp('cutoff frequency');wc

%coefficients of the filter

[b,a]=cheby2(N,rs,wc);

%Frequency Response

[H,om]=freqz(b,a);

%magnitude plot

plot(om/pi,abs(H));

title('Magnitude plot');

figure;

plot(om/pi,angle(H));

title('Phase Plot');

%magnitude plot in db figure;

plot(om/pi,20*log10(abs(H)));

title('Magnitude plot in db');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 62

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter the pass band in db 5
Enter the stop band attenuation in db 15

Enter the pass band cuttoff frequency in hz 1000

Enter the stop band cutoff frequency in hz 1500

Enter the sampling frequency 10000

OUTPUT:

wp =
0.2000

ws =

0.3000

order of the filter =
N =

2

cutoff frequency

wc =
0.3000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 63

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 64

% CHEBYSHEVE TYPE -2 HIGH PASS FILTER

clc;

clear all;

close all;
rp=input('Enter the pass band in db');

rs=input('Enter the stop band attenuation in

db');
fp=input('Enter the pass band cuttoff frequency in

hz'); fs=input('Enter the stop band cutoff frequency in

hz'); f=input('Enter the sampling frequency');

%Normalising frequency

wp=2*fp/f
ws=2*fs/f

% Order of filter & 3db cuttoff frequency

[N,wc]=cheb1ord(wp,ws,rp,rs);

disp('order of the filter =');N
disp('cutoff frequency');wc

%coefficients of the filter

[b,a]=cheby1(N,rp,wc,'high')

; %Frequency Response

[H,om]=freqz(b,a);

%magnitude plot

plot(om/pi,abs(H));

title('Magnitude plot');

figure;

plot(om/pi,angle(H));

title('Phase Plot');

%magnitude plot in db figure;

plot(om/pi,20*log10(abs(H)));

title('Magnitude plot in db');

(INPUTS TO BE GIVEN IN COMMAND WINDOW)

Enter the pass band in db 5
Enter the stop band attenuation in db 15

Enter the pass band cuttoff frequency in hz 1500

Enter the stop band cutoff frequency in hz 1000

Enter the sampling frequency 10000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 65

OUTPUT:

wp =
0.3000

ws =

0.2000

order of the filter =
N =

2

cutoff frequency

wc =
0.2000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 66

EXPERIMENT- 06

INTERPOLATION AND DECIMATION

6.a)AIM: To perform down-sampling of given signal in Time and Frequency domain.

SOFTWARE: Matlab R2014a

THEORY:

Sample-rate conversion is the process of changing the sampling rate of a discrete signal

to obtain a new discrete representation of the underlying continuous signal. Multi rate

processing are a clever digital signal processing (DSP) techniques that broadband and

wireless design engineers can employ during the system design process.

Using these techniques, design engineers can gain an added degree of freedom

that could improve the overall performance of a system architecture. Application areas

include image scaling and audio/visual systems, where different sampling-rates may be

used for engineering, economic, or historical reasons and multi-rate processing finds use

in signal processing systems where various sub-systems with differing sample or clock

rates need to be interfaced together. At other times multi-rate processing is used to

reduce computational overhead of a system.

Types of Sample-Rate Conversion:

There are three types of sampling rate conversion. These include down conversion or

decimation by a factor M; up conversion by a factor L; and sampling rate conversion by

a ratio of M and L.To start the discussion, let's focus on down conversion

In signal processing, downsampling (or "subsampling") is the process of reducing

the sampling rate of a signal. This is usually done to reduce the data rate or the size of the

data. The down sampling factor (commonly denoted by D) is usually an integer or a

rational fraction greater than unity. This factor multiplies the sampling time or,

equivalently, divides the sampling rate.

 X[n] Y[nD]

 D

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 67

ALGORITHM:

 Read the length of the signal and downsampling rate

 Generate a sine wave

 Generate the downsampled signal by y=x([1:M:length(x)])

 Plot input and output waveforms

MATLAB PROGRAM:

clc;

N=input('length of output signal = ');

M=input('down sampling factor = ');

fs=input('sampling frequency = ');

n=0:N-1;

m=0:N*M-1;

x=sin(2*pi*fs*m);

y=x([1:M:length(x)]);

subplot(2,1,1);

stem(n,x(1:N));

title('input sequence');

subplot(2,1,2);

stem(n,y);

title('output sequence');

OUTPUT VALUES:

length of output signal = 25

down sampling factor = 3

sampling frequency = 0.05

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 68

WAVEFORM

0 5 10 15 20 25
-1

-0.5

0

0.5

1
input sequence

n

x
[n

]

0 5 10 15 20 25
-1

-0.5

0

0.5

1
output sequence

n

x
u
[n

]

% MATLAB CODE FOR DOWN SAMPLING IN FREQUENCY-DOMAIN:

clc;

freq=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];

mag=[0 0 0 0 1 0 0 0 0 0 0];

x=fir2(99,freq,mag);

[xz,w]=freqz(x,1,512);

plot(w/pi,abs(xz));

title('input sequence');

M=3;

y=x([1:M:length(x)]);

[yz,w]=freqz(y,1,512);

figure;

plot(w/pi,abs(yz));

title('output spectrum');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 69

OUTPUT WAVEFORMS:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
input sequence

Frequency

M
a
g
n
it
u
d
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
output spectrum

Frequency

M
ag

ni
tu

de

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 70

6.b)AIM: To perform Up-Sampling of a given signal.

SOFTWARE: Matlab R2014a

THEORY:

Up sampling is the process of increasing the sampling rate of a signal. The up

sampling factor (commonly denoted by I) is usually an integer or a rational fraction

greater than unity. This factor multiplies the sampling rate or, equivalently, divides the

sampling period.

 X[n] Y[n/I]

% MATLAB CODE FOR UP SAMPLING IN TIME-DOMAIN:

clc;

N=input('length of input signal = ');

L=input('up sampling factor = ');

fs=input('sampling frequency = ');

n=0:N-1;

x=sin(2*pi*fs*n);

y=zeros(1,L*length(x));

y([1:L:length(y)])=x

subplot(2,1,1);

stem(n,x);

title('input sequence');

subplot(2,1,2);

stem(n,y(1:length(x)));

title('output sequence');

I

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 71

OUTPUT :

length of input signal = 25

up sampling factor = 3

sampling frequency = 0.1

OUTPUT WAVEFORMS:

0 5 10 15 20 25
-1

-0.5

0

0.5

1
input sequence

n

x
[
n
]

0 5 10 15 20 25
-1

-0.5

0

0.5

1
output sequence

n

x
u
[
n
]

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 72

% MATLAB CODE FOR UP SAMPLING IN FREQUENCY-DOMAIN:

clc;

freq=[0 0.25 0.5 0.75 1];

mag=[0 0 0 1 0];

x=fir2(99,freq,mag);

[xz,w]=freqz(x,1,512);

plot(w/pi,abs(xz));

title('input sequence');

L=input('up sampling factor = ');

y=zeros(1,L*length(x));

y([1:L:length(y)])=x;

[yz,w]=freqz(y,1,512);

plot(w/pi,abs(yz));

title('output spectrum');

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
input sequence

Frequency

M
ag

ni
tu

de

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
output spectrum

Frequency

M
ag

ni
tu

de

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 74

6.c)AIM: To perform Decimation of a given input signal by an integer D.

DESCRIPTION:

The process of reducing the sampling rate by a factor D is called Decimation. In

this process, the input signal is first passed through a low pass filter. The filter eliminates

the spectrum of the input signal in the range of pi/D < w < pi. The output of filter is then

down sampled by a factor of D to produce the desired decimation.

 X[n] y[m]

% MATLAB CODE FOR DECIMATION OF INPUT SIGNAL:

clc;

N=input('length of input signal = ');

D=input('down sampling factor = ');

F1=input('input sampling frequency1 = ');

F2=input('input sampling frequency2 = ');

n=0:N-1;

x=sin(2*pi*F1*n)+sin(2*pi*F2*n);

y=decimate(x,D,'fir');

subplot(2,1,1);

stem(n,x(1:N));

title('input sequence');

xlabel('Frequency');

ylabel('Magnitude');

subplot(2,1,2);

 Down

sampler

 Anti-aliasing

Filter

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 75

m=0:N/D-1;

stem(m,y(1:N/D));

title('output sequence');

xlabel('Frequency');

ylabel('Magnitude');

OUTPUT

length of input signal = 100

down sampling factor = 2

input sampling frequency1 = 0.043

input sampling frequency2 = 0.032

OUTPUT WAVEFORMS:

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2
input sequence

Frequency

M
a
g
n
it
u
d
e

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2
output sequence

Frequency

M
a
g
n
it
u
d
e

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 76

6.d)AIM: To perform interpolation of given signal by an integer factor.

DESCRIPTION:

The process of increasing the sampling rate by an integer factor I is called

Interpolation. An increase in the sampling rate can be accomplished by interpolating I-1

samples between successive values of the signal.

 x[n] y[m]

% MATLAB CODE FOR DECIMATION OF INPUT SIGNAL:

clc;

N=input('length of input signal = ');

l=input('up sampling factor = ');

F1=input('input sampling frequency1 = ');

F2=input('input sampling frequency2 = ');

n=0:N-1;

x=sin(2*pi*F1*n)+sin(2*pi*F2*n);

y=interp(x,l);

subplot(2,1,1);

stem(n,x(1:N));

title('input sequence');

xlabel('Frequency');

ylabel('Magnitude');

subplot(2,1,2);

m=0:N*l-1;

Up sample Anti-aliasing

Filter

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 77

stem(m,y(1:N*l));

title('output sequence');

xlabel('Frequency');

ylabel('Magnitude');

OUTPUT :

length of input signal = 50

up sampling factor = 2

input sampling frequency1 = 0.043

input sampling frequency2 = 0.032

OUTPUT WAVEFORMS

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2
input sequence

Frequency

M
a
g
n
it
u
d
e

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2
output sequence

Frequency

M
a
g
n
it
u
d
e

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 78

EXPERIMENT- 07

IMPLEMENTATION OF MULTI RATE SYSTEMS

AIM: To implement a multi rate system using Matlab Simulink

SOFTWARE: Matlab R2014a

THEORY:

 Simulink, developed by The MathWorks, is a commercial tool for modeling,

simulating and analyzing dynamic systems. Its primary interface is a graphical block

diagramming tool and a customizable set of block libraries. It offers tight integration

with the rest of the MATLAB environment and can either drive MATLAB or be scripted

from it. Simulink is widely used in control theory and digital signal processing for

simulation and design.

 MATLAB command line using just the signal processing toolbox, can be enhanced

significantly by adding Simulink and the DSP blockset. Simulink is a blockdiagram

based simulation environment that sits on top of MATLAB. The DSP blockset augments

Simulink with a DSP specific block library and requires that the signal processing

toolbox be present.

 Starting Simulink:

You start Simulink from the MATLAB IDE:

Open MATLAB and select the Simulink icon in the Toolbar:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 79

Or type ―simulink‖ in the Command window, like this:

Then the following window appears (Simulink Library Browser)

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 80

Crearting Model:

 Click the New icon on the Toolbar in order to create a new Simulink model:

The following window appears:

Multi rate system:

 Sample-rate conversion is the process of changing the sampling rate of a discrete

signal to obtain a new discrete representation of the underlying continuous signal. Multi

rate processing are a clever digital signal processing (DSP) techniques that broadband

and wireless design engineers can employ during the system design process.

Using these techniques, design engineers can gain an added degree of freedom

that could improve the overall performance of a system architecture. Application areas

include image scaling and audio/visual systems, where different sampling-rates may be

used for engineering, economic, or historical reasons and multi-rate processing finds use

in signal processing systems where various sub-systems with differing sample or clock

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 81

rates need to be interfaced together. At other times multi-rate processing is used to

reduce computational overhead of a system.

Results:

Input Spectrum:

Downsampled Spectrum

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 82

Upsampled spectrum

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 83

Filtered output spectrum:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 84

EXPERIMENT- 08

TIME RESPONSE OF NON-LINEAR SYSTEMS

AIM: To obtain the time response of a given second order system with its damping

frequency.

SOFTWARE: Matlab R2014a

THEORY:

The time response has utmost importance for the design and analysis of control systems

because these are inherently time domain systems where time is independent variable.

During the analysis of response, the variation of output with respect to time can be

studied and it is known as time response. To obtain satisfactory performance of the

system with respect to time must be within the specified limits. From time response

analysis and corresponding results, the stability of system, accuracy of system and

complete evaluation can be studied easily.

Due to the application of an excitation to a system, the response of the system is known

as time response and it is a function of time. The two parts of response of any system:

(i) Transient response

 (ii) Steady-state response.

Transient response: The part of the time response which goes to zero after large interval

of time is known as transient response.

Steady state response: The part of response that means even after the transients have died

out is said to be steady state response.

The total response of a system is sum of transient response and steady state response:

C(t)=Ctr(t)+Css(t)

TIME RESPONSE OF SECOND ORDER CONTROL SYSTEM: A second order

control system is one wherein the highest power of ‗s‘ in the denominator of its transfer

function equals 2.

 Transfer function is given by: TF=

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 85

ωnis called natural frequency of oscillations.

ωd is called damping frequency oscillations.

 called damping ratio.

MATLAB PROGRAM:

wn=input('enter value of undamped natural frequency')

 z=input('enter value of damping ratio')

n=[wn*wn];

 p=sqrt(1-z^2);

 wd=wn*p ;

h=[p/z] ;

k=atan(h) ;

m=pi-k;

tr=[m/wd]

 tp=[pi/wd]

q=z*wn ;

ts=[3/q] % 5 percent tolerance

r=z*pi ;

f=[r/p] ;

mp=exp(-f)

num=[0 0 n]

den=[1 2*z*wn n]

s=tf(num,den)

 hold on

step(s)

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 86

Results:

wn=4

z=0.5

tr =

 0.6046

tp =

 0.9069

ts =

 1.5000

mp =

 0.1630

s =

 16

 s^2 + 4 s + 16

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 87

.EXPERIMENT- 09

DESIGN OF PI AND PID CONTROLLERS

9.a)AIM: To design a PI controller for the given phase margin.

SOFTWARE: Matlab R2014a

THEORY:

A controller with transfer function Gc(s) can be introduced in cascade with the open loop

transfer function G(s) to modify the transient and steady state response of the system.

 The different types of controllers employed in control systems are the following

1. Proportional Controller(P-controller)

2. Proportional-plus-integral controller(PI-controller)

3. Proportional-plus-derivative controller(PD-controller)

4. Proportional-plus-derivative-plus-integral controller(PID-controller)

The proportional controller is a device that produces an output signal u(t) which is

proportional to the input signal

 In P-controller, u(t) α e(t)

 u(t) = Kp e(t)

 Gc(s) = Kp

The PI-controller is a device that produces an output signal, u(t) consisting of two terms-

one term proportional to input signal e(t) and other proportional to integral of the input

signal e(t)

 u(t) α [e(t) +]

 u(t)= Kp e(t) + Ki

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 88

 Gc(s) = Kp+

The PD-controller is a device that produces an output signal, u(t) consisting of two

terms-one term proportional to input signal e(t) and other proportional to derivative of

the input signal e(t)

 u(t) α [e(t) +]

 u(t)= Kp e(t) + Kd

 Gc(s) = Kp+ Kd s

The PID-controller is a device that produces an output signal, u(t) consisting of three

terms- proportional to input signal e(t) ,proportional to integral of the input signal e(t)

and proportional to derivative of the input signal e(t)

 u(t) α [e(t) +]

 u(t)= Kp e(t) +Ki +Kd

 Gc(s) = Kp+ +Kd s

Algorithm:

1. Read the given uncompensated transfer function G(s) and desired gain margin Gm

2. Plot the Bode Plot for G(s)

3. Find the magnitude A1 and Phase Ø1of G(jw) at the given gain cross over

frequency w1

4. Calculate = Gm – (180
0
 + Ø1)

5. Calculate Kp = and Ki =

6. Find the transfer function G(s) = Kp +

Matlab Program:

clc;

pmr=60;

w1=0.5;

s=tf('s');

h=100/((s+1)*(s+2)*(s+5));

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 89

w=logspace(-5,5);

bode(h,'k')

mag=100/((sqrt(w1^2+1))*(sqrt(w1^2+4))*(sqrt(w1^2+25)))

ang=(-atan(w1)-atan(w1/2)-atan(w1/5))*(180/pi)

theta=180+pmr-ang;

theta=theta*(pi/180)

kp=cos(theta)/mag

ki=(-w1*sin(theta))/mag

numc=[kp ki];

denc=[1 0];

gc=tf(numc,denc)

g=h*gc

figure

bode(g,'k')

[gm pm pcf gcf]=margin(g)

Results:

Mag=8.63

Ang=-46.3

kp =

 0.0325

ki =

 0.0556

gc =

 0.03253 s + 0.05558

 S

g =

 3.253 s + 5.558

 s^4 + 8 s^3 + 17 s^2 + 10 s

gm =

 11.9824

pm =

 60.0007

pcf =

 2.4743

gcf =

 0.5000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 90

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 91

9.b)AIM: To design a PID controller for the given phase margin.

SOFTWARE: Matlab R2014a

Algorithm:

1. Read the given uncompensated transfer function G(s) and desired gain margin Gm

2. Plot the Bode Plot for G(s)

3. Find the magnitude A1 and Phase Ø1of G(jw) at the given gain cross over

frequency w1

4. Calculate = Gm – (180
0
 + Ø1)

5. Calculate Kp = , Ki = and Kd =

6. Find the transfer function G(s) = Kp + +Kds

Matlab Program:

clc;

pmr=45;

w1=4;

kv=0.6;

s=tf('s');

h=100/((s+1)*(s+2)*(s+10));

w=logspace(-5,5);

bode(h,'k')

mag=100/((sqrt(w1^2+1))*(sqrt(w1^2+4))*(sqrt(w1^2+100)))

ang=(-atan(w1)-atan(w1/2)-atan(w1/10))*(180/pi)

theta=180+pmr-ang;

theta=theta*(pi/180)

kp=cos(theta)/mag

ki=2;

kd=(sin(theta)/(w1*mag))+(ki/w1^2)

numc=[kd kp ki];

denc=[0 1 0];

gc=tf(numc,denc)

g=h*gc

figure

bode(g,'k')

[gm pm pcf gcf]=margin(g)

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 92

Results:

Mag=0.5035

Ang= -161.2

Kp=1.7

Kd=0.3442

Ki=2

gc =

 0.3442 s^2 + 1.782 s + 2

 s

g =

 34.42 s^2 + 178.2 s + 200

 s^4 + 13 s^3 + 32 s^2 + 20 s

gm = Inf

pm = 45.0000

pcf = Inf

gcf = 4.0000

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 93

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 94

 PART-B

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 95

EXPERIMENT # 1

SOLUTION OF DIFFERENCE EQUATION

AIM:Write a C Program to implement Difference Equation, compile, build using

CCSand then execute the solution of difference equation using DSK .Plot Time-

Frequency graph for the same and observe the output.

SOFTWARE / HARDWARE REQUIREMENTS:

1. Software: CCS(IDE) Code Composer Studio (Integrated Development

Environment)

2. C compiler

3. Hardware: DSK Kit

DIFFERENCE EQUATION:

An Nth order linear constant – coefficient difference equation can be represented as

If we assume that the system is causal a linear difference equation provides an explicit

relationship between the input and output. This can be seen by rewriting above equation.

„C„ PROGRAM TO IMPLEMENT DIFFERENCE EQUATION:

#include

<stdio.h>#include

<math.h>

#define FREQ 400

float y[3]={0,0,0};

float x[3]={0,0,0};
float z[128],m[128],n[128],p[128];

main()

{
int i=0,j;

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 96

float a[3]={ 0.072231, 0.144462, 0.072231};

float b[3]={ 1.000000, -1.109229, 0.398152};

for(i=0;i<128;i++)
{

m[i]=sin(2*3.14*FREQ*i/24000);

}

for(j=0;j<128;j++)
{

x[0]=m[j];

y[0] = (a[0] *x[0]) +(a[1]* x[1]) +(x[2]*a[2]) - (y[1]*b[1])-(y[2]*b[2]);

z[j]=y[0];

y[2]=y[1];

y[1]=y[0];

x[2]=x[1];

x[1]=x[0];

}

PROCEDURE:

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using .Project-new . pull down menu, save it in a

separate directory(c : \ti\myprojects) with name lconv.pjt.

 Add the source files DIFF EQ1.c
 to the project using ‗Project add files to project‟ pull down menu.

 Add the linker command file hello.cmd .
(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

 Add the run time support library

filerts6700.lib(Path:

c:\ti\c6000\cgtools\lib\rts6700.lib)

 Compile the program using the .Project-compile. pull down menu or by

clicking the shortcut icon on the left side of program window.

 Build the program using the .Project-Build. pull down menu or

by clicking the shortcut icon on the left side of program window.

 Load the program(lconv.out) in program memory of DSP chip using

the File-load program. pull down menu.

 To View output graphically

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 97

o Select view graph time and frequency.

RESULT:A C-program to implement difference equation is written and output

isexecuted and verified using DSK successfully.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 98

EXPERIMENT #2

IMPULSE RESPONSE

AIM:Write a C – Program to implement impulse response, compile, and build

usingCCS and execute the output using DSK.

SOFTWARE / HARDWARE REQUIREMENTS:

1 Software: CCS(IDE) Code Composer Studio (Integrated Development

Environment)

2 C compiler

3 Hardware: DSK Kit

„C‟ PROGRAM TO IMPLEMENT IMPULSE RESPONSE:

#include <stdio.h>

#define Order 2

#define Len 10

float y[Len]={0,0,0},sum;

main()
{

int j,k;

float a[Order+1]={0.1311, 0.2622, 0.1311};

float b[Order+1]={1, -0.7478, 0.2722};

for(j=0;j<Len;j++)

{

sum=0;

for(k=1;k<=Order;k++)

{

if((j-k)>=0)

sum=sum+(b[k]*y[j-

k]);
}

if(j<=Order)

{

y[j]=a[j]-sum;

}

else

{

y[j]=-sum;

}

printf("Respose[%d] = %f\n",j,y[j]);

}}

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 99

RESULT:A C-program to implement impulse response is written and output is

executed andverified using DSK successfully.

OUTPUT

Response[1]=0.360237

Response[2]=0.364799

 Response[3]=0.174741

Response[4]=0.031373

Response[5]= -0.024104

Response[6]= -0.026565

Response[7]= -0.013304

Response[8]= -0.002718

Response[9]=0.001589

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 100

EXPERIMENT # 3

LINEAR CONVOLUTION

AIM:Write a C-Program implement Linear Convolution, compile and built it using

CCSand execute the output using DSK. Plot Time-Frequency graph for the same and

verify the output.

SOFTWARE / HARDWARE REQUIREMENTS:

1 Software: CCS(IDE) Code Composer Studio (Integrated Development

Environment)

2 C compiler

3 Hardware: DSK Kit

TO VERIFY LINEAR CONVOLUTION:

Linear Convolution involves the following operations.

1. Folding
2. Multiplication

3. Addition

4. Shifting

These operations can be represented by a Mathematical Expression as follows:

x[]= Input signal Samples
h[]= Impulse response co-efficient.

y[]= Convolution output.

n = No. of Input samples

h = No. of Impulse response co-efficient.

Algorithm to implement ‗C‘ program for Convolution:

Eg: x[n] = {1, 2, 3, 4}

h[k] = {1, 2, 3, 4}

Where: n=4, k=4. Values of n & k should be a multiple of 4.

If n & k are not multiples of 4, pad with zero‘s to make

multiples of 4

r = n+k-1 Size of output sequence.
= 4+4-1

= 7

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 101

Output: y[r] = { 1, 4, 10, 20, 25, 24, 16}.

NOTE: At the end of input sequences pad ‗n‘ and ‗k‘ no. of zero‘s.

„C‟ PROGRAM TO IMPLEMENT LINEAR CONVOLUTION

/* prg to implement linear convolution */

#include<stdio.h>

#define LENGHT1 6 /*Lenght of i/p samples sequence*/
#define LENGHT2 4 /*Lenght of impulse response Co-efficients */

int x[2*LENGHT1-1]={1,2,3,4,5,6,0,0,0,0,0}; /*Input Signal Samples*/
int h[2*LENGHT1-1]={1,2,3,4,0,0,0,0,0,0,0}; /*Impulse Response Coefficients*/

int y[LENGHT1+LENGHT2-1];

main()
{

int i=0,j;

for(i=0;i<(LENGHT1+LENGHT2-1);i++)
{

y[i]=0;

for(j=0;j<=i;j++)

y[i]+=x[j]*h[i-j];

}
for(i=0;i<(LENGHT1+LENGHT2-1);i++)

printf("%d\n",y[i]);

}

PROCEDURE:

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using .Project-new . pull down menu, save it in a

separate directory(c:\ti\myprojects) with name lconv.pjt.

 Add the source files conv.c
o to the project using .Project add files to ‗project‘ pull down menu.

 Add the linker command file hello.cmd.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 102

 (Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

 Add the run time support library filerts6700.lib
 (Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

 Compile the program using the .Project-compile. pull down menu or by

clicking the shortcut icon on the left side of program window.

 Build the program using the .Project-Build. pull down menu or

by clicking the shortcut icon on the left side of program window.

 Load the program(lconv.out) in program memory of DSP chip using

the ‗File-load program‘ pull down menu.

 To View output graphically
o Select view graph time and frequency

RESULT:A C-program to implement Linear Convolution is written and output

isexecuted and verified using DSK successfully.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 103

EXPERIMENT #4

CIRCULAR CONVOLUTION

AIM:Write a C-Program implement Linear Convolution, compile and built it using

CCSand execute the output using DSK. Plot Time-Frequency graph for the same and

verify the output.

SOFTWARE / HARDWARE REQUIREMENTS:
1 Software: CCS(IDE) Code Composer Studio (Integrated Development

Environment)

2 C compiler

3 Hardware DSK Kit

CIRCULAR CONVOLUTION

Steps for Cyclic Convolution

Steps for cyclic convolution are the same as the usual convolution, except all

index calculations are done "mod N" = "on the wheel"

Steps for Cyclic Convolution

Step1: .Plot f[m] and h[-m]

Step 2: "Spin" h[-m] n times Anti Clock Wise (counter-clockwise) to get h[n-m]

(i.e. Simply rotate the sequence, h[n], clockwise by n steps)

Step 3: Point wise multiply the f[m] wheel and the h[n-m] wheel. sum=y[n]

Step 4: Repeat for all 0 ≤ n ≤ N-1

Example 1: Convolve (n = 4)

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 104

h[−m] =

Multiply f[m] and sum to yield: y[0] =3

h[1−m]

Multiply f[m] and sum to yield: y[1] =5

h[2−m]

Figure 6
Multiply f[m] and sum to yield: y[2] =3

• h[3−m]

Figure 7
Multiply f[m] and sum to yield: y[3] =1

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 105

„C‟ PROGRAM TO IMPLEMENT CIRCULAR CONVOLUTION

#include<stdio.h>

int

m,n,x[30],h[30],y[30],i,j,temp[30],k,x2[30],a[30];

void main()
{

printf(" enter the length of the first sequence\n");

scanf("%d",&m);
printf(" enter the length of the second sequence\n");

scanf("%d",&n);

printf(" enter the first

sequence\n");

for(i=0;i<m;i++)scanf("%d",&x[i])

;

printf(" enter the second

sequence\n"); for(j=0;j<n;j++)

scanf("%d",&h[j]);

if(m-n!=0) /*If length of both sequences are not equal*/
{

if(m>n) /* Pad the smaller sequence with zero*/

{

for(i=n;i<m;i++)

h[i]=0;

n=m;
}

for(i=m;i<n;i++)

x[i]=0;

m=n;

}

y[0]=0;

a[0]=h[0];

for(j=1;j<n;j++) /*folding h(n) to h(-n)*/

a[j]=h[n-j];

/*Circular

convolution*/ for(i=0;i<n;i++)
y[0]+=x[i]*a[i];

for(k=1;k<n;k++)

{

y[k]=0;

/*circular shift*/

for(j=1;j<n;j++)

x2[j]=a[j-1]; x2[0]=a[n-1];

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 106

for(i=0;i<n;i++)
{

a[i]=x2[i];

y[k]+=x[i]*x2[i];

}

}

/*displaying the result*/

printf(" the circular convolution is\n");

for(i=0;i<n;i++)
printf("%d \t",y[i]);

}

IN PUT: Eg: x[4]={3, 2, 1,0}

h[4]={1, 1, 0,0}

OUT PUT: y[4]={3, 5, 3,0}

PROCEDURE:

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using .Project-new . pull down menu, save it in a

separate directory(c:\ti\myprojects) with name lconv.pjt.

 Add the source files Circular Convolution.C
o to the project using .Project add files to ‗project‘ pull down menu.

 Add the linker command file hello.cmd.
 (Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

 Add the run time support library filerts6700.lib
 (Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

 Compile the program using the .Project-compile. pull down menu or by

clicking the shortcut icon on the left side of program window.

 Build the program using the .Project-Build. pull down menu or

by clicking the shortcut icon on the left side of program window.

 Load the program(lconv.out) in program memory of DSP chip using

the ‗File-load program‘ pull down menu.

RESULT:A C-program to implement Circular Convolution is written and output

isexecuted and verified using DSK successfully.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 107

EXPERIMENT # 5

STUDY OF PROCEDURE TO WORK WITH DSK IN REAL TIME

TMS320C6713 DSK CODEC(TLV320AIC23) Configuration Using Board Support
Library

1.0 Unit Objective:
To configure the codec TLV320AIC23 for a talk through program using the board upport

library.

2.0 Prerequisites
TMS320C6713 DSP Starter Kit, PC with Code Composer Studio, CRO, Audio

Source, Speakers and Signal Generator.

3.0 Discussion on Fundamentals:
Refer BSL API Module under, help contents TMS320C6713 DSK.

4.0 Procedure

 All the Real time implementations covered in the Implementations module

follow code Configuration using board support library.

 The board Support Library (CSL) is a collection of functions, macros,

and symbols used to configure and control on-chip peripherals.

 The goal is peripheral ease of use, shortened development time, portability,

hardware abstraction, and some level of standardization and compatibility

among TI devices.

 BSL is a fully scalable component of DSP/BIOS. It does not require the use of

other DSP/BIOS components to operate.

Source Code: codec.c

Procedure for Real time Programs :

1. Connect CRO to the Socket Provided for LINE OUT.

2. Connect a Signal Generator to the LINE IN Socket.

3. Switch on the Signal Generator with a sine wave of frequency 500 Hz. and Vp-p=1.5v

4. Now Switch on the DSK and Bring Up Code Composer Studio on the PC.

5. Create a new project with name codec.pjt.

6. From the File Menu newDSP/BIOS Configurationselect

“dsk6713.cdb‖ and save it as “xyz.cdb”.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 108

7. Add “xyz.cdb” to the current project.

8. Add the given “codec.c” file to the current project which has the main function and

calls all the other necessary routines.

9. Add the library file ―dsk6713bsl.lib” to the current project

Path “C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib”

10. Copy files “dsk6713.h” and “dsk6713_aic23.h” from

C:\CCStudio\C6000\dsk6713\include and paste it in current project.

11. Build, Load and Run the program.

12. You can notice the input signal of 500 Hz. appearing on the CRO verifying the codec

configuration.

13. You can also pass an audio input and hear the output signal through the speakers.

14. You can also vary the sampling frequency using the

DSK6713_AIC23_setFreqFunction in the “codec.c” file and repeat the above

steps.

5.0 Conclusion:

The codec TLV320AIC23 successfully configured using the board support library and

verified.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 109

EXPERIMENT # 6

DESIGN OF FIR (HP/LP) FILTER

AIM:Write a C-Program design FIR (Low Pass / High Pass) filter, compile and built

itusing CCS and execute the output using DSK.

SOFTWARE/HARDWARE REQUIREMENTS:

1 Software: CCS(IDE) Code Composer Studio (Integrated Development

Environment)

2 C compiler

3 Hardware:DSK Kit

DESIGNING AN FIR FILTER:

Following are the steps to design linear phase FIR filters Using Windowing Method.

I. Clearly specify the filter specifications.

Eg: Order = 30;

Sampling Rate = 8000 samples/sec

Cut off Freq. = 400 Hz.

II. Compute the cut-off frequency Wc

Eg: Wc = 2*pie* fc / Fs

= 2*pie* 400/8000

= 0.1*pie

III. Compute the desired Impulse Response h d (n) using particular

Window Eg: b_rect1=fir1 (order, Wc, ‘high‘, boxcar(31));

IV. Convolve input sequence with truncated Impulse Response x (n)*h (n)

USING MATLAB TO DETERMINE FILTER

COEFFICIENTS:Using FIR1 Function on Matlab

B = FIR1(N,Wn) designs an N'th order lowpass FIR digital filter and returns the

filter coefficients in length N+1 vector B.

The cut-off frequency Wn must be between 0 < Wn < 1.0, with 1.0 corresponding to

half the sample rate. The filter B is real and has linear phase, i.e., even symmetric

coefficients obeying B(k) = B(N+2-k), k = 1,2,...,N+1.

If Wn is a two-element vector, Wn = [W1 W2], FIR1 returns an order N bandpass filter

with passband W1 < W < W2.
B = FIR1(N,Wn,'high') designs a highpass filter.

B = FIR1(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2].

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 110

If Wn is a multi-element vector,
Wn = [W1 W2 W3 W4 W5 ... WN],

FIR1 returns an order N multiband filter with

bands 0 <W <W1,W1 <W <W2, ..., WN <W < 1.

B = FIR1(N, Wn, 'DC-1') makes the first band a

passband. B = FIR1(N,Wn, 'DC-0') makes the first band a

stopband.

For filters with a passband near Fs/2, e.g., highpass and bandstop filters, N must be

even.

By default FIR1 uses a Hamming window. Other available windows, including

Boxcar, Hanning, Bartlett, Blackman, Kaiser and Chebwin can be specified with an

optional trailing argument. For example,
B = FIR1(N,Wn,kaiser(N+1,4)) uses a Kaiser window with beta=4.

B = FIR1(N,Wn,'high',chebwin(N+1,R)) uses a Chebyshev

window.

By default, the filter is scaled so the center of the first pass band has magnitude

exactly one after windowing. Use a trailing 'noscale' argument to prevent this scaling,
e.g. B = FIR1(N,Wn,'noscale'),

B = FIR1(N,Wn,'high','noscale'),

B = FIR1(N,Wn,wind,'noscale').

Matlab Program to generate „FIR Filter-Low Pass‟ Coefficients using FIR1

% FIR Low pass filters using rectangular, triangular and kaiser windows
% sampling rate - 8000

order = 30;
cf=[500/4000,1000/4000,1500/4000]; cf--> contains set of cut-off frequencies[Wc]

% cutoff frequency - 500
b_rect1=fir1(order,cf(1),boxcar(31)); Rectangular

b_tri1=fir1(order,cf(1),bartlett(31)); Triangular

b_kai1=fir1(order,cf(1),kaiser(31,8)); Kaisar [Where 8-->Beta Co-efficient]

% cutoff frequency - 1000
b_rect2=fir1(order,cf(2),boxcar(31));

b_tri2=fir1(order,cf(2),bartlett(31));

b_kai2=fir1(order,cf(2),kaiser(31,8));

% cutoff frequency - 1500

b_rect3=fir1(order,cf(3),boxcar(31));

b_tri3=fir1(order,cf(3),bartlett(31));

b_kai3=fir1(order,cf(3),kaiser(31,8));

fid=fopen(‘FIR_lowpass_rectangular.txt‘,‘wt‘)

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 111

;

fprintf(fid,‘\t\t\t\t\t\t%s\n‘,‘Cutoff -400Hz‘);

fprintf(fid,‘\nfloat b_rect1[31]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n‘,b_rect1);

fseek(fid,-1,0);
fprintf(fid,‘};‘);

fprintf(fid,‘\n\n\n\n‘);

fprintf(fid,‘\t\t\t\t\t\t%s\n‘,‘Cutoff -800Hz‘);

fprintf(fid,‘\nfloat b_rect2[31]={‘);
fprintf(fid,‘%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n‘,b_rect2);

fseek(fid,-1,0);

fprintf(fid,‘};‘);

fprintf(fid,‘\n\n\n\n‘);

fprintf(fid,‘\t\t\t\t\t\t%s\n‘,‘Cutoff -1200Hz‘);

fprintf(fid,‘\nfloat b_rect3[31]={‘);
fprintf(fid,‘%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n‘,b_rect3);

fseek(fid,-1,0);

fprintf(fid,‘};‘);

fclose(fid);

winopen(‘FIR_highpass_rectangular.txt‘);

T.1 : Matlab generated Coefficients for FIR Low Pass Kaiser filter:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 112

T.2: Matlab generated Coefficients for FIR Low Pass Rectangular filter

T.3: Matlab generated Coefficients for FIR Low Pass Triangular filter

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 113

MATLAB Program to generate „FIR Filter-High Pass‟ Coefficients using FIR1

% FIR High pass filters using rectangular, triangular and Kaiser Windows
% sampling rate - 8000

order = 30;

cf=[400/4000,800/4000,1200/4000]; cf--> contains set of cut-off frequencies[Wc]

% cutoff frequency - 400

b_rect1=fir1(order,cf(1),‘high‘,boxcar(31);

b_tri1=fir1(order,cf(1),‘high‘,bartlett(31));

b_kai1=fir1(order,cf(1),‘high‘,kaiser(31,8));
Where Kaiser(31,8)--> ‘8‘defines the value of ‘beta‘.

% cutoff frequency - 800

b_rect2=fir1(order,cf(2),‘high‘,boxcar(31));

b_tri2=fir1(order,cf(2),‘high‘,bartlett(31));

b_kai2=fir1(order,cf(2),‘high‘,kaiser(31,8));

% cutoff frequency - 1200

b_rect3=fir1(order,cf(3),‘high‘,boxcar(31));

b_tri3=fir1(order,cf(3),‘high‘,bartlett(31));

b_kai3=fir1(order,cf(3),‘high‘,kaiser(31,8));

fid=fopen(‘FIR_highpass_rectangular.txt‘,‘wt‘);

fprintf(fid,‘\t\t\t\t\t\t%s\n‘,‘Cutoff -400Hz‘);

fprintf(fid,‘\nfloat b_rect1[31]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n‘,b_rect1);

fseek(fid,-1,0);
fprintf(fid,‘};‘);

fprintf(fid,‘\n\n\n\n‘);

fprintf(fid,‘\t\t\t\t\t\t%s\n‘,‘Cutoff -800Hz‘);

fprintf(fid,‘\nfloat b_rect2[31]={‘);
fprintf(fid,‘%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n‘,b_rect2);

fseek(fid,-1,0);

fprintf(fid,‘};‘);

fprintf(fid,‘\n\n\n\n‘);

fprintf(fid,‘\t\t\t\t\t\t%s\n‘,‘Cutoff -1200Hz‘);

fprintf(fid,‘\nfloat b_rect3[31]={‘);
fprintf(fid,‘%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,\n‘,b_rect3);

fseek(fid,-1,0);

fprintf(fid,‘};‘);

fclose(fid);

winopen(‘FIR_highpass_rectangular.txt‘);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 114

T.1 : MATLAB generated Coefficients for FIR High Pass Kaiser filter:

T.2 :MATLAB generated Coefficients for FIR High Pass Rectangular filter:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 115

T.3 : MATLAB generated Coefficients for FIR High Pass Triangular filter:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 116

FLOW CHART TO IMPLEMENT FIR FILTER:

C PROGRAM TO IMPLEMENT FIR FILTER:

fir.c

#include "filtercfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

float filter_Coeff[] ={0.000000,-0.001591,-0.002423,0.000000,0.005728,0.011139,

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 117

0.010502,-0.000000,-0.018003,-0.033416,-0.031505,0.000000, 0.063010, 0.144802,

0.220534, 0.262448, 0.220534,0.144802,0.063010,0.000000,-0.031505,-0.033416,-

0.018003,-0.000000,0.010502,0.011139,0.005728,0.000000,-0.002423,-0.001591,

0.000000 };

static short in_buffer[100];

DSK6713_AIC23_Config config = {\

0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Leftline input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume*/ \

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */ \

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */

\ 0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */ \
0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */ \

0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */ \

0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */ \

0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */ \
};

/*
* main() - Main code routine, initializes BSL and generates tone */

void main()
{

DSK6713_AIC23_CodecHandle hCodec;

Uint32 l_input, r_input,l_output, r_output;

/* Initialize the board support library, must be called first */

DSK6713_init();

/* Start the codec */
hCodec = DSK6713_AIC23_openCodec(0, &config);

DSK6713_AIC23_setFreq(hCodec, 1);

while(1)

{ /* Read a sample to the left channel */

while (!DSK6713_AIC23_read(hCodec, &l_input));

/* Read a sample to the right channel */
while (!DSK6713_AIC23_read(hCodec, &r_input));

l_output=(Int16)FIR_FILTER(&filter_Coeff ,l_input);

r_output=l_output;

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 118

/* Send a sample to the left channel */
while (!DSK6713_AIC23_write(hCodec, l_output));

/* Send a sample to the right channel */
while (!DSK6713_AIC23_write(hCodec, r_output));

}

/* Close the codec */

DSK6713_AIC23_closeCodec(hCodec);
}

signed int FIR_FILTER(float * h, signed int x)
{

int i=0;

signed long output=0;

in_buffer[0] = x; /* new input at buffer[0] */

for(i=29;i>0;i--)
in_buffer[i] = in_buffer[i-1]; /* shuffle the buffer */

for(i=0;i<31;i++)
output = output + h[i] * in_buffer[i];

return(output);

}

PROCEDURE :

 Switch on the DSP board.

 Open the Code Composer Studio.

 Create a new project

o Project $ New (File Name. pjt , Eg: FIR.pjt)

 Initialize on board codec.

o Note: ―Kindly refer the Topic Configuration of 6713 Codec using BSL‖

 Add the given above .C. source file to the current project (remove codec.c

sourcefile from the project if you have already added).

 Connect the speaker jack to the input of the CRO.

 Build the program.

 Load the generated object file (*.out) on to Target board.

 Run the program

 Observe the waveform that appears on the CRO screen.

 Vary the frequency on function generator to see the response of filter.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 119

EXPERIMENT # 7

DESIGN OF IIR (HP/LP) FILTER

AIM:Write a C-Program to design IIR (Low Pass / High Pass) filter, compile and built

itusing CCS and execute the output using DSK.

SOFTWARE/HARDWARE REQUIREMENTS:

1 Software: CCS(IDE) Code Composer Studio (Integrated

Development Environment)

2 C compiler

3 Hardware: DSK Kit

DESIGNING AN IIR FILTER:

GENERAL CONSIDERATIONS:

In the design of frequency selective filters, the desired filter characteristics are specified

in the frequency domain in terms of the desired magnitude and phase response of the

filter. In the filter design process, we determine the coefficients of a causal IIR filter that

closely approximates the desired frequency response specifications.

IMPLEMENTATION OF DISCRETE-TIME SYSTEMS:

Discrete time Linear Time-Invariant (LTI) systems can be described completely by

constant coefficient linear difference equations. Representing a system in terms of

constant coefficient linear difference equation is it‘s time domain characterization. In the

design of a simple frequency selective filter, we would take help of some basic

implementation methods for realizations of LTI systems described by linear constant

coefficient difference equation.

UNIT OBJECTIVE:

The aim of this laboratory exercise is to design and implement a Digital IIR Filter &

observe its frequency response. In this experiment we design a simple IIR filter so as

to stop or attenuate required band of frequencies components and pass the frequency

components which are outside the required band.

BACKGROUND CONCEPTS:

An Infinite impulse response (IIR) filter possesses an output response to an impulse

which is of an infinite duration. The impulse response is "infinite" since there is

feedback in the filter, that is if you put in an impulse ,then its output must produced for

infinite duration of time.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 120

PREREQUISITES:

• Concept of Discrete time signal processing.
• Analog filter design concepts.
• TMS320C6713 Architecture and instruction set.

EQUIPMENTS NEEDED:

• Host (PC) with windows (95/98/Me/XP/NT/2000).
• TMS320C6713 DSP Starter Kit (DSK).
• Oscilloscope and Function generator.

ALGORITHM TO IMPLEMENT:

We need to realize the Butter worth band pass IIR filter by implementing the difference

equation y[n] = b0x[n] + b1x[n-1] + b2x[n-2] - a1y[n-1] - a2y[n-2] where b0-b2, a0-a2

are feed forward and feedback word coefficients respectively [Assume second order of

filter]. These coefficients are calculated using MATLAB. A direct form I implementation

approach is taken.

• Step 1 -Initialize the McBSP, the DSP board and the on board

codec. Kindly refer the Topic Configuration of 6713Codec using

BSL―

• Step 2 -Initialize the discrete time system, that is, specify the initial

conditions. Generally zero initial conditions are assumed.
• Step 3 -Take sampled data from codec while input is fed to DSP kit from the

signal generator. Since Codec is stereo, take average of input data read from

left and right channel . Store sampled data at a memory location.
• Step 4 - Perform filter operation using above said difference equation and

store filter Output at a memory location .
• Step 5 -Output the value to codec (left channel and right channel) and view

the output at Oscilloscope.
• Step 6 -Go to step 3.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 121

MATLAB PROGRAM TO GENRATE FILTER CO-EFFICIENTS

% IIR Low pass Butterworth and Chebyshev filters
% sampling rate - 24000

order = 2;

cf=[2500/12000,8000/12000,1600/12000]

;

% cutoff frequency -2500
[num_bw1,den_bw1]=butter(order,cf(1));

[num_cb1,den_cb1]=cheby1(order,3,cf(1));

% cutoff frequency -8000
[num_bw2,den_bw2]=butter(order,cf(2));

[num_cb2,den_cb2]=cheby1(order,3,cf(2));

fid=fopen(‘IIR_LP_BW.txt‘,‘wt‘);

fprintf(fid,‘\t\t----------- Pass band range: 0-2500Hz---------- \n‘);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 122

fprintf(fid,‘\t\t----------- Magnitude response: Monotonic----- \n\n\‘);

fprintf(fid,‘\n float num_bw1[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,num_bw1);

fprintf(fid,‘\nfloat den_bw1[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,den_bw1);

fprintf(fid,‘\n\n\n\t\t----------- Pass band range: 0-8000Hz---------- \n‘);

fprintf(fid,‘\t\t----------- Magnitude response: Monotonic----- \n\n‘);

fprintf(fid,‘\nfloat num_bw2[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,num_bw2);

fprintf(fid,‘\nfloat den_bw2[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,den_bw2);

fclose(fid);

winopen(‘IIR_LP_BW.txt‘);

fid=fopen(‘IIR_LP_CHEB Type1.txt‘,‘wt‘);

fprintf(fid,‘\t\t----------- Pass band range: 2500Hz---------- \n‘);

fprintf(fid,‘\t\t----------- Magnitude response: Rippled (3dB) ----- \n\n\‘);

fprintf(fid,‘\nfloat num_cb1[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,num_cb1);

fprintf(fid,‘\nfloat den_cb1[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,den_cb1);

fprintf(fid,‘\n\n\n\t\t----------- Pass band range: 8000Hz---------- \n‘);

fprintf(fid,‘\t\t----------- Magnitude response: Rippled (3dB)----- \n\n‘);

fprintf(fid,‘\nfloat num_cb2[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,num_cb2);

fprintf(fid,‘\nfloat den_cb2[9]={‘);

fprintf(fid,‘%f,%f,%f,%f,%f,\n%f,%f,%f,%f};\n‘,den_cb2);

fclose(fid);
winopen(‘IIR_LP_CHEB Type1.txt‘);

%%%%%%%%%%%%%%%%%%
figure(1);

[h,w]=freqz(num_bw1,den_bw1);

w=(w/max(w))*12000;

plot(w,20*log10(abs(h)),‘linewidth‘,2)

hold on

[h,w]=freqz(num_cb1,den_cb1);

w=(w/max(w))*12000;

plot(w,20*log10(abs(h)),‘linewidth‘,2,‘color‘,‘r‘)

grid on

legend(‘Butterworth‘,‘Chebyshev Type-

1‘); xlabel(‘Frequency in Hertz‘);

ylabel(‘Magnitude in Decibels‘);

title(‘Magnitude response of Low pass IIR filters (Fc=2500Hz)‘);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 123

figure(2);

[h,w]=freqz(num_bw2,den_bw2);

w=(w/max(w))*12000;

plot(w,20*log10(abs(h)),‘linewidth‘,2)

hold on

[h,w]=freqz(num_cb2,den_cb2);

w=(w/max(w))*12000;
plot(w,20*log10(abs(h)),‘linewidth‘,2,‘color‘,‘r‘)

grid on
legend(‘Butterworth‘,‘Chebyshev Type-1 (Ripple: 3dB)‘);

xlabel(‘Frequency in Hertz‘);

ylabel(‘Magnitude in Decibels‘);

title(‘Magnitude response in the passband‘);

axis([0 12000 -20 20]);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 124

„C‟ PROGRAM TO IMPLEMENT IIR FILTER

#include "xyzcfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

const signed int filter_Coeff[] =
{

//12730,-12730,12730,2767,-18324,21137 /*HP 2500 */

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 125

//312,312,312,32767,-27943,24367 /*LP 800 */

//1455,1455,1455,32767,-23140,21735 /*LP 2500 */

//9268,-9268,9268,32767,-7395,18367 /*HP 4000*/

7215,-7215,7215,32767,5039,6171, /*HP 7000*/

} ;

/* Codec configuration settings */

DSK6713_AIC23_Config config = { \
0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Left line input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */ \

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */

\ 0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */ \

0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */

\ 0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */

\ 0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */

\ 0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */

\ };

/*
* main() - Main code routine, initializes BSL and generates tone

*/

void main()

{

DSK6713_AIC23_CodecHandle hCodec;

int l_input, r_input, l_output, r_output;

/* Initialize the board support library, must be called first */

DSK6713_init();

/* Start the codec */
hCodec = DSK6713_AIC23_openCodec(0, &config);

DSK6713_AIC23_setFreq(hCodec, 3);

while(1)
{ /* Read a sample to the left channel */

while (!DSK6713_AIC23_read(hCodec, &l_input));

/* Read a sample to the right channel */
while (!DSK6713_AIC23_read(hCodec, &r_input));

l_output=IIR_FILTER(&filter_Coeff ,l_input);

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 126

r_output=l_output;

/* Send a sample to the left channel */
while (!DSK6713_AIC23_write(hCodec, l_output));

/* Send a sample to the right channel */

while (!DSK6713_AIC23_write(hCodec, r_output));

}

/* Close the codec */

DSK6713_AIC23_closeCodec(hCodec);
}

signed int IIR_FILTER(const signed int * h, signed int x1)
{

static signed int x[6] = { 0, 0, 0, 0, 0, 0 }; /* x(n), x(n-1), x(n-2). Must be static */

static signed int y[6] = { 0, 0, 0, 0, 0, 0 }; /* y(n), y(n-1), y(n-2). Must be static */

int temp=0;

temp = (short int)x1; /* Copy input to temp */

x[0] = (signed int) temp; /* Copy input to x[stages][0] */

temp = ((int)h[0] * x[0]) ; /* B0 * x(n) */

temp += ((int)h[1] * x[1]); /* B1/2 * x(n-1)

*/ temp += ((int)h[1] * x[1]); /* B1/2 * x(n-

1) */ temp += ((int)h[2] * x[2]); /* B2 * x(n-

2) */

temp -= ((int)h[4] * y[1]); /* A1/2 * y(n-1)

*/ temp -= ((int)h[4] * y[1]); /* A1/2 * y(n-

1) */ temp -= ((int)h[5] * y[2]); /* A2 * y(n-

2) */

/* Divide temp by coefficients[A0] */

temp >>= 15;

if (temp > 32767)
{

temp = 32767;

}

else if (temp < -32767)

{

temp = -32767;

}

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 127

y[0] = temp ;

/* Shuffle values along one place for next time */

y[2] = y[1]; /* y(n-2) = y(n-1)

/ y[1] = y[0]; / y(n-1) = y(n)

*/

x[2] = x[1]; /* x(n-2) = x(n-1)

/ x[1] = x[0]; / x(n-1) = x(n)

*/

/* temp is used as input next time through */

return (temp<<2);

}

PROCEDURE :

 Switch on the DSP board.
 Open the Code Composer Studio.

 Create a new project

o Project $ New (File Name. pjt , Eg: IIR.pjt)
 Initialize on board codec.

o Note: “Kindly refer the TopicConfiguration of 6713 Codec using BSL‖

 Add the given above .C. source file to the current project (remove codec.c

sourcefile from the project if you have already added).
 Connect the speaker jack to the input of the CRO.

 Build the program.

 Load the generated object file(*.out) on to Target board.

 Run the program

 Observe the waveform that appears on the CRO screen.

o Vary the frequency on function generator to see the response of filter

RESULT:A C-program to design IIR (Low Pass/High Pass) filter is written and

outputis executed and verified using DSK successfully.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 128

EXPERIMENT #8

FFT OF A GIVEN 1-D SIGNAL

AIM:Write a C-Program to find FFT of a 1-D signal, compile and built it using CCS

andexecute the output using DSK. Plot the Time-frequency graph for Input and Output

SOFTWARE/HARDWARE REQUIREMENTS:

1 Software: CCS(IDE) Code Composer Studio (Integrated

Development Environment)

2 C compiler

3 Hardware: DSK Kit

Fast Fourier Transforms(FFT):

The DFT Equation

Where [Twiddle Factor]

Twiddle Factor

In the Definition of the DFT, there is a factor called the Twiddle Factor

where N = number of samples.
If we take an 8 bit sample sequence we can represent the twiddle factor as a vector in

the unit circle. e.g.

Note that

1. It is periodic. (i.e. it goes round and round the circle !!)
2. That the vectors are symmetric

The vectors are equally spaced around the circle.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 129

Why the FFT?

If you look at the equation for the Discrete Fourier Transform you will see that it is quite

complicated to work out as it involves many additions and multiplications involving

complex numbers. Even a simple eight sample signal would require 49 complex

multiplications and 56 complex additions to work out the DFT. At this level it is still

manageable; however a realistic signal could have 1024 samples which requires over

20,000,000 complex multiplications and additions. As you can see the number of

calculations required soon mounts up to unmanageable proportions.

The Fast Fourier Transform is a simply a method of laying out the computation, which is

much faster for large values of N, where N is the number of samples in the sequence. It

is an ingenious way of achieving rather than the DFT‘s clumsy P^2 timing.

The idea behind the FFT is the divide and conquer approach, to break up the original N

point sample into two (N / 2) sequences. This is because a series of smaller problems is

easier to solve than one large one. The DFT requires (N-1)^2 complex multiplications

and N(N-1) complex additions as opposed to the FFT‘s approach of breaking it down

into a series of 2 point samples which only require 1 multiplication and 2 additions and

the recombination of the points which is minimal.

For example Seismic Data contains hundreds of thousands of samples and would

take months to evaluate the DFT. Therefore we use the FFT.

FFT Algorithm

The FFT has a fairly easy algorithm to implement, and it is shown step by step in the

list below. Thjis version of the FFT is the Decimation in Time Method

1. Pad input sequence, of N samples, with ZERO‘s until the number of samples is

the nearest power of two.

2. Bit reverse the input sequence.

e.g. 3 = 011 goes to 110 = 6

3. Compute (N / 2) two sample DFT‘s from the shuffled

inputs. See "Shuffled Inputs"

4. Compute (N / 4) four sample DFT‘s from the two sample

DFT‘s. See "Shuffled Inputs"

5. Compute (N / 2) eight sample DFT‘s from the four sample

DFT‘s. See "Shuffled Inputs"

6. Until the all the samples combine into one N-sample DFT

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 130

Shuffled Inputs

The process of decimating the signal in the time domain has caused the INPUT samples

to be re-ordered. For an 8 point signal the original order of the samples is

0, 1, 2, 3, 4, 5, 6, 7

But after decimation the order is

0, 4, 2, 6, 1, 5, 3, 7

At first it may look as if there is no order to this new sequence, BUT if the numbers

are represented as binary a patter soon becomes apparent.

What has happened is that the bit patterns representing the sample number has been

reversed. This new sequence is the order that the samples enter the FFT.

ALGORITHM TO IMPLEMENT FFT:

• Step 1 -Select no. of points for FFT(Eg: 64)

• Step 2 – Generate a sine wave of frequency .f . (eg: 10 Hz with a sampling rate =

No. of Points of FFT(eg. 64)) using math library function.

• Step 3 -Take sampled data and apply FFT algorithm .

• Step 4 – Use Graph option to view the Input & Output.

• Step 5 -Repeat Step-1 to 4 for different no. of points & frequencies.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 131

C PROGRAM TO IMPLEMENT FFT :

Main.c (fft 256.c):

#include <math.h>
#define PTS 64 //# of points for FFT

#define PI 3.14159265358979

typedef struct {float real,imag;} COMPLEX;

void FFT(COMPLEX *Y, int n); //FFT prototype
float iobuffer[PTS]; //as input and output buffer

float x1[PTS]; //intermediate buffer

short i; //general purpose index variable

short buffercount = 0; //number of new samples in

iobuffer

short flag = 0; //set to 1 by ISR when iobuffer

full

COMPLEX w[PTS]; //twiddle constants stored in w

COMPLEX samples[PTS]; //primary working buffer

main()
{

for (i = 0 ; i<PTS ; i++) // set up twiddle constants in w

{
w[i].real = cos(2*PI*i/(PTS*2.0)); //Re component of twiddle constants

w[i].imag =-sin(2*PI*i/(PTS*2.0)); //Im component of twiddle constants

}

for (i = 0 ; i < PTS ; i++) //swap buffers
{

iobuffer[i] = sin(2*PI*10*i/64.0); /*10- > freq, 64 -> sampling freq*/

samples[i].real=0.0;

samples[i].imag=0.0;

}

for (i = 0 ; i < PTS ; i++) //swap buffers
{

samples[i].real=iobuffer[i]; //buffer with new data

}

for (i = 0 ; i < PTS ; i++)

samples[i].imag = 0.0; //imag components = 0

FFT(samples,PTS); //call function FFT.c

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 132

for (i = 0 ; i < PTS ; i++) //compute magnitude
{

x1[i] = sqrt(samples[i].real*samples[i].real + samples[i].imag*samples[i].imag);

}

} //end of main

fft.c:

#define PTS 64 //# of points for FFT
typedef struct {float real,imag;} COMPLEX;

extern COMPLEX w[PTS]; //twiddle constants stored in w

void FFT(COMPLEX *Y, int N) //input sample array, # of points
{

COMPLEX temp1,temp2; //temporary storage variables

int i,j,k; //loop counter variables

int upper_leg, lower_leg; //index of upper/lower butterfly leg

int leg_diff; //difference between upper/lower leg

int num_stages = 0; //number of FFT stages (iterations)

int index, step; //index/step through twiddle constant

i = 1; //log(base2) of N points= # of stages

do
{

num_stages +=1;

i = i*2;

}while (i!=N);

leg_diff = N/2; //difference between upper&lower legs
step = (PTS*2)/N; //step between values in twiddle.h

for (i = 0;i < num_stages; i++) //for N-point FFT

{

index = 0;

for (j = 0; j < leg_diff; j++)

{

for (upper_leg = j; upper_leg < N; upper_leg += (2*leg_diff))

{

lower_leg = upper_leg+leg_diff;

temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real;

temp1.imag = (Y[upper_leg]).imag +

(Y[lower_leg]).imag; temp2.real = (Y[upper_leg]).real -

(Y[lower_leg]).real; temp2.imag = (Y[upper_leg]).imag -

(Y[lower_leg]).imag;
(Y[lower_leg]).real = temp2.real*(w[index]).real -temp2.imag*(w[index]).imag;

(Y[lower_leg]).imag =

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 133

temp2.real*(w[index]).imag+temp2.imag*(w[index]).real;

(Y[upper_leg]).real = temp1.real;

(Y[upper_leg]).imag = temp1.imag;
}

index += step;

}

leg_diff =

leg_diff/2; step *=

2;
}

j = 0;

for (i = 1; i < (N-1); i++) //bit reversal for resequencing data

{

k = N/2;

while (k <= j)

{

j = j - k;

k = k/2;

}

j = j + k;

if (i<j)

{

temp1.real = (Y[j]).real;

temp1.imag =

(Y[j]).imag; (Y[j]).real =

(Y[i]).real; (Y[j]).imag =

(Y[i]).imag; (Y[i]).real =

temp1.real; (Y[i]).imag =

temp1.imag;
}

}

return;

}

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 134

HOW TO PROCEED

 Open Code Composer Studio, make sure the DSP kit is turned on.

 Start a new project using .Project-new . pull down menu, save it in a

separate directory(c:\ti\myprojects) with name ―FFT.pjt‖.

 Add the source files ―FFT256.c” and “FFT.C” in the project using

‗Project$add files to project‘ pull down menu.

 Add the linker command file .hello.cmd‖

 Add the rts file ―rts6700.lib‖

 Compile the program using the .Project-compile. pull down menu or

by clicking the shortcut icon on the left side of program window.

 Load the program in program memory of DSP chip using the .File-load

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 135

program. pull down menu.

 Run the program and observe output using graph utility.

RESULT:A C-program to find FFT of a 1-D signal is written and output is executed

andverified using DSK successfully. Time-frequency graph has been plotted for input

and output for the same

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 136

APPENDIX -1

MATLAB

The Language of Technical Computing

What is MATLAB?

MATLAB is a high performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment, where

problems and solutions are expressed in familiar mathematical notation. Typical uses

include:
• Math and computation
• Algorithm development
• Data acquisition
• Modeling, simulation and prototyping
• Data analysis, exploration and visualization
• Scientific and engineering graphics
• Application development, including graphical user interface building

MA TLAB is an interactive system whose basic data element is an array that does not

require dimensioning. This allows you to solve many technical computing problems,

especially those with matrix and vector formulations, in a fraction of the time it would

take to write a program in a scalar non-interactive language such as C or FORTRAN.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to

provide easy access to matrix software developed by the LINPACK and EISPACK

projects. Today, MATLAB engines incorporate the LAPACK and BLAS libraries,

embedding the state of the art in software for matrix computation.

MA TLAB has evolved over a period of years with input from many users. In university

environments, it is the standard instructional tool for introductory and advanced courses

in mathematics, engineering and science. In industry, MATLAB is the tool of choice for

high-productivity research, development, and analysis.

MATLAB features a family of add-on application-specific solutions called toolboxes.

Very important to most users of MATLAB. Toolboxes allow you to learn and apply

specialized technology. Toolboxes are comprehensive collections of MATLAB functions

(M-files) that extend the MATLAB environment to solve particular classes of problems.

Areas in which toolboxes are available include signal processing, control systems, neural

networks, fuzzy logic, wavelets, simulation and many others.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 137

The MA TLAB System

The MATLAB system consists of five main parts:

Development Environment: This is the set of tools and facilities that help you

useMATLAB functions and files. Many of these tools are graphical user interfaces. It

includes the MATLAB desktop and Command Window, a command history, an editor

and debugger, and browsers for viewing help, the workspace, files and the search path.

The MATLAB Mathematical Function Library: This is a vast collection

ofcomputational algorithms ranging from elementary functions like sum, sine, cosine and

complex arithmetic, to more sophisticated functions like matrix inverse, matrix eigen

values, Bessel functions, and Fast Fourier transforms.

The MATLAB Language: This is a high-level. Matrix/array language with control

flowstatements, functions, data structures, input/output, and object -oriented

programming features. It allows both ―programming in the small" to rapidly create quick

and dirty throw-away programs, and "programming in the large" to create large and

complex application programs.
.

Graphics: MATLAB has extensive facilities for displaying vectors and matrices

asgraphs, as well as annotating and printing these graphs. It includes high-level functions

for two-dimensional and three-dimensional data visualization, image processing,

animation, and presentation graphics. It also includes low- level functions that allow you

to fully customize the appearance of graphics as well as to build complete graphical user

interfaces on your MATLAB applications.

The MA TLAB Application Program Interface (API): This is a library that allows

youto write C and FORTRAN programs that interact with MATLAB. It includes

facilities for calling routines from MA TLAB (dynamic linking), calling MATLAB as a

computational engine, and for reading and writing MAT-files.

Explanation of Some Commands
STEM

Discrete sequence or "stem" plot.

STEM(Y) plots the data sequence Y as stems from the x axis terminated with circles

forthe data value. If Y is a matrix then each column is plotted as a separate series.

STEM(X,Y) plots the data sequence Y at the values specified in X.

STEM(...,’filled') produces a stem plot with filled markers.

STEM (..,. 'LINESPEC') uses the line type specified for the stems and markers.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 138

STEM(AX,.. } plots into axes with handle AX. Use GCA to get the handle to

thecurrent axes or to create one if none exist.

H = STEM(...) returns a vector of stem series handles in H, one handle per column of

datain Y.

PLOT

Linear plot.

PLOT(X,Y) plots vector Y versus vector X. If X or Y is a matrix, then the vector isplotted

versus the rows or columns of the matrix which ever line up. If X is a scalar and Y is a

vector, length(Y) disconnected points are plotted.

PLOT(Y) plots the columns of Y versus their index.
If Y is complex, PLOT(Y) is equivalent to PLOT (real(Y), imag(Y)). In all other uses of

PLOT, the imaginary part is ignored.

Various line types, plot symbols and colors may be obtained with PLOT(X, Y,S) where

S is a character string made from one element from any or all the following 3 columns:

b blue . point - solid

g green 0 circle : dotted

r red x x-mark -. dashdot

c cyan + plus -- dashed

m magenta * star (none) no line

y yellow s square p pentagram

k black d diamond

v triangle (down) /\ triangle (up)

 < triangle (left)

 > triangle (right)

For example, (i) PLOT(X,Y,'c+:') plots a cyan dotted line with a plus at each data point;
(ii) PLOT(X,Y,'bd') plots blue diamond at each data point but does

not draw any line.

PLOT (Xl,Yl,Sl.x2,Y2,S2.x3,Y3,S3,...) combines the plots defined by the (X, Y,S)

triples,where the X's and Y's are vectors or matrices and the S's are strings.

For example, PLOT(X,Y,'y -',X Y,'go') plots the data twice, with a solid yellow line

interpolating green circles at the data points.

The PLOT command, if no color is specified, makes automatic use of the colors

specified by the axes Color Order property. The default Color Order is listed in the table

above for color systems where the default is blue for one line, and for multiple lines, to

cycle through the first six colors in the table. For monochrome systems,

PLOT cycles over the axes Line Style Order property.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 139

If you do not specify a marker type, PLOT uses no marker.

If you do not specify a line style, PLOT uses a solid line.

PLOT(AX,...) plots into the axes with handle AX.
PLOT returns a column vector of handles to line series objects, one handle per

plottedline.

The X, Y pairs, or X, Y,S triples, can be followed by parameter/value pairs to specify

additional properties of the lines. For example, PLOT(X,Y,'LineWidth',2,'Color',[6 0 0])

will create a plot with a dark red line width of 2 points. .

SUBPLOT

Create axes in tiled positions.

H = SUBPLOT(m,n,p), or SUBPLOT(mnp), breaks the Figure window into an m-by-

nmatrix of small axes, selects the p-th axes for the current plot, and returns the axis

handle. The axes are counted along the top row of the Figure window, then the second

row, etc.

For example,

SUBPLOT(2,1,1), PLOT(income)
SUBPLOT(2,1,2), PLOT(outgo)

It plots income on the top half of the window and outgo on the bottom half

SUBPLOT (m,n,p), if the axis already exists, makes it current.

SUBPLOT(m,n,p, 'replace’), if the axis already exists, deletes it and creates a new axis.

SUBPLOT(m,n,p, 'align’) places the axes so that the plot boxes are aligned instead

ofpreventing the labels and ticks from overlapping.

SUBPLOT(m,n,P), where P is a vector, specifies an axes position that covers all

thesubplot positions listed in P.

SUBPLOT(H), where H is an axis handle, is another way of making an axis current

forsubsequent plotting commands.

SUBPLOT('position',[left bottom width heigh]) creates an axis at the specified

positionin normalized coordinates (in the range from 0.0 to 1.0).

SUBPLOT(m,n,p, PROP1, V ALVEI, PROP2, V ALVE2, ...) sets the specified property-

value pairs on the subplot axis. To add the subplot to a specific figure pass the figure

handle as the value for the 'Parent‘ property.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 140

If a SUBPLOT specification causes a new axis to overlap an existing axis, the existing

axis is deleted - unless the position of the new and existing axis are identical For

example, the statement SUBPLOT(l, 2 ,1) deletes all existing axes overlapping the left

side of the Figure window and creates a new axis on that side - unless there is an axes

there with a position that exactly matches the position of the new axes (and 'replace' was

not specified), in which case all other overlapping axes will be deleted and the matching

axes will become the current axes.

SUBPLOT(111) is an exception to the rules above, and is not identical in behavior to

SUBPLOT(1,1,1). For reasons of backwards compatibility, it is a special case of subplot

which does not immediately create an axes, but instead sets up the figure so that the next

graphics command executes CLF RESET in the figure (deleting all children of the

figure), and creates a new axes in the default position. This syntax does not return a

handle, so it is an error to specify a return argument. The delayed CLF RESET is

accomplished by setting the figure's NextPlot to 'replace' .

SIZE

Size of an array.

D = SIZE(X), for M-by-N matrix X, returns the two-element row vector D = [M,

N]containing the number of rows and columns in the matrix. For N-D arrays, SIZE(X)

returns a l-by-N vector of dimension lengths. Trailing singleton dimensions are ignored.

[M, N] = SIZE(X) for matrix X, returns the number of rows and columns in X as

separateoutput variables.

[Ml.M2.M3..... MN] = SIZE(X) returns the sizes of the first N dimensions of

arrayX If the number of output arguments N does not equal NDIMS(X), then for:

N > NDIMS(X). size returns ones in the "extra"

variables. i.e.. outputs NDIMS(X)+ 1 through

N.
N < NDIMS(X). MN contains the product of the sizes of the

remaining dimensions. i.e., dimensions N+ 1

through NDIMS(X)

M = SIZE(X.DIM) returns the length of the dimension specified by the scalar DIM. For

example, SIZE(X, l) returns the number of rows.

When SIZE is applied to a Java array, the number of rows returned is the length of the

Java array and the number of columns is always 1. When SIZE is applied to a Java array

of arrays, the result describes only the top level array in the array of arrays.

INPUT

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 141

Prompt for user input

R = INPUT('How many apples') gives the user the prompt in the text string and then

waitsfor input from the keyboard The input can be any MATLAB expression, which is

evaluated, using the variables in the current workspace, and the result returned in R If the

user presses the return key without entering anything. INPUT returns an empty matrix.

R = INPUT ('What is your nam',’s') gives the prompt in the text string and waits

forcharacter string input. The typed input is not evaluated; the characters are simply

returned as a MATLAB string. .

XLABEL

X-axis label.

XLABEL('text') adds text beside the X-axis on the current axis.

XLABEL('text’,'Property1’,’PropertyValue’,'Property2',’PropertyValue2’,...) sets

thevalues of the specified properties of the xlabel.

XLABEL(AX, ..) adds the xlabel to the specified axes.

H = XLABEL(...) returns the handle to the text object used as the label.

YLABEL

Y-axis label.

YLABEL (‘text') adds text beside the Y-axis on the current axis.

YLABEL (‘text','Propertyl',’PropertyValuel’,'Property2’,’PropertyValue2’,...) sets

thevalues of the specified properties of the ylabel.

YLABEL (AX,...) adds the ylabel to the specified axes.

H = YLABEL (..) returns the handle to the text object used as the label.

TITLE

Graph title.

TITLE ('text') adds text at the top of the current axis.

TITLE ('text’,'Propertyl',’PropertyValuel’,'Property2’,’PropertyValue2’,...) sets

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 142

thevalues of the specified properties of the title.

TITLE(AX,...) adds the title to the specified axes.

H = TITLE(..) returns the handle to the text object used as the title.

CONV

Convolution and polynomial multiplication.

C = CONV(A, B) convolves vectors A and B. The resulting vector is length

LENGTH(A)+LENGTH(B)-l.

If A and B are vectors of polynomial coefficients, convolving them is equivalent to

multiplying the two polynomials.

ZEROS

Zeros array

ZEROS(N) is an N-by-N matrix of zeros.
ZEROS(M,N) or ZEROS([M,N]) is an M-by-N matrix of zeros.
ZEROS(M,N,P,...) or ZEROS([M N P ...]) is an M-by-N-by-P-by- ... array of zeros.

ZEROS(SIZE(A)) is the same size as A and all zeros.

ZEROS with no arguments is the scalar 0.

ZEROS(M,N ... ,CLASSNAME) or ZEROS([M,N],CLASSNAME) is an M-by-

NBy-... array of zeros of class CLASSNAME.

ONES

Ones array.

ONES(N) is an N-by-N matrix of ones.

ONES(M,N) or ONES([M,N]) is an M-by-N matrix of ones.

ONES(M,N,P,...) or ONES([M N P ...]) is an M-by-N-by-P-by- array of ones.

ONES(SIZE(A)) is the same size as A and all ones.

ONES with no arguments is the scalar 1.

ONES(M,N,...,CLASSNAME) or ONES([M,N ...],CLASSNAME) is an M-by-N-by- ..

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 143

... array of ones ofc1ass CLASSNAME.

FOR

Repeat statements a specific number of times.

The general form of a FOR statement is:

FOR variable = expr, statement, …, statement END

The columns of the expression are stored one at a time in the variable and then the

following statements, up to the END, are executed. The expression is often of the form

X:Y, in which case its columns are simply scalars. Some examples (assume N has

already been assigned a value).

FOR 1 = l:N,

FORJ= l:N,

A (I, J) = 1/(1+ J-1);

END

END

FOR S = 1.0: -0.1: 0.0, END steps S with increments of -0.1
FOR E = EYE (N), ... END sets E to the unit N-vectors.

Long loops are more memory efficient when the colon expression appears in the FOR

statement since the index vector is never created.

The BREAK statement can be used to terminate the loop prematurely.

IF

Conditionally execute statements.

The general form of the IF statement is

IF

expression

statements
ELSEIF

expression

statements

ELSE

statement

s

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 144

END

The statements are executed if the real part of the expression has all non-zero

elements. The ELSE and ELSEIF parts are optional.
Zero or more ELSEIF parts can be used as well as nested IF's.

The expression is usually of the form expr rop expr where rop is =, <, >, <=, >=, or ~=.

Exampl

e if! = J
A(L,J) = 2; elseif

abs(I-J) = 1

A(L,J) = -1;

else

A(I,J) = 0;

end

LENGTH

Length of vector

LENGTH(X) returns the length of vector X. It is equivalent to MAX (SIZE(X)) for non-

empty arrays and 0 for empty ones.

SUM

Sum of elements

s = SUM(X) is the sum of the elements of the vector X If X is a matrix, S is a row vector

with the sum over each column. For N-D arrays, SUM(X) operates along the first non-

singleton dimension. If X is floating point, that is double or single, S is accumulated

natively, that is in the same class as X, and S has the same class as X If X is not floating

point, S is accumulated in double and S has class double.

S = SUM (X.DIM) sums along the dimension DIM.

S = SUM(X, 'double’) and S = SUM(X, DIM, 'double’) accumulate S in double and S has

class double, even if X is single.

S = SUM(X,. 'native’) and S = SUM(X, DIM, 'native’) accumulate S natively and S has

the same class as X.

Examples:

If X = [0 1 2 3 4 5]

then sum(Xl) is [3 5 7] and sum(X2) is [312];

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 145

If X = int8 (1:20) then sum(X) accumulates in double and the result is double (210)

while sum(X, 'native') accumulates in int8, but overflows and saturates to int8 (127).

PROD

Product of elements

For vectors, PROD(X) is the product of the elements of X. For matrices, PROD(X) is a

row vector with the product over each column. For N-D arrays, PROD(X) operates on

the first non-singleton dimension.

PROD(X,.DIM) works along the dimension DIM.

Example: If X = [0 1 2 3 4 5]
then prod(X, l) is [0 4 10] and prod(X,2) is [0 60]

CLEAR

Clear variables and functions from memory.

CLEAR removes all variables from the workspace.

CLEAR VARIABLES does the same thing.

CLEAR GLOBAL removes all global variables.

CLEAR FUNCTIONS removes all compiled M- and MEX-functions.

CLEAR ALL removes all variables, globals, functions and MEX

links.
CLEAR ALL at the command prompt also removes the Java packages import list.
CLEAR IMPORT removes the Java packages import list at the command prompt.

Itcannot be used in a function.

CLEAR CLASSES is the same as CLEAR ALL except that class definitions are

alsocleared If any objects exist outside the workspace (say in userdata or persistent in a

locked m-file) a warning will be issued and the class definition will not be cleared

CLEAR CLASSES must be used if the number or names of fields in a class are changed.

CLEAR JAVA is the same as CLEAR ALL except that java classes on the dynamic

javapath (defined using JAVACLASSP ATH) are also cleared.

CLEAR VARI VAR2 ... clears the variables specified. The wildcard character '*' can

beused to clear variables that match a pattern. For instance, CLEAR X* clears all the

variables in the current workspace that start with X

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 146

CLEAR -REGEXP PATI PAT2 can be used to match all patterns using

regularexpressions. This option only clears variables. For more information on using

regular expressions, type "doc regexp" at the command prompt

If X is global, CLEAR X removes X from the current workspace, but leaves it accessible

to any functions declaring it global.

CLEAR GLOBAL X completely removes the global variable X.

CLEAR GLOBAL -REGEXP PAT removes global variables that match regular

expressionpatterns.

Note that to clear specific global variables, the GLOBAL option must come first

otherwise, all global variables will be cleared.

CLEAR FUN clears the function specified If FUN has been locked by MLOCK it will

remain in memory. Use a partial path (see PARTIALPATH) to distinguish between

different overloaded versions of FUN. For instance, 'clear inline/display' clears only the

INLINE method for DISPLAY, leaving any other implementations in memory.

CLEAR ALL, CLEAR FUN, or CLEAR FUNCTIONS also have the side effect of

removing debugging breakpoints and reinitializing persistent variables since the

breakpoints for a function and persistent variables are cleared whenever the m-file

changes or is cleared

Use the functional form of CLEAR, such as CLEAR ('name'), when the variable name or

function name is stored in a string.

CLC

Clear command window

CLC clears the command window and homes the cursor.

GRID

Grid lines

GRID ON adds major grid lines to the current axes.

GRID OFF removes major and minor grid lines from the current axes.

GRID MINOR toggles the minor grid lines of the current axes.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 147

GRID, by itself, toggles the major grid lines of the current axes.

GRID(AX,..) uses axes AX instead of the current axes.

GRID sets the XGrid, YGrid, and ZGrid properties of the current

axes.Set (AX, 'XMinorGrid', ‘on') turns on the minor grid.

CLOSE

Close figure.

CLOSE(H) closes the window with handle H.

CLOSE, by itself, closes the current figure window.

CLOSE('name’) closes t4e named window.

CLOSE ALL closes all the open figure windows.

CLOSE ALL HIDDEN closes hidden windows as well.

STATUS = CLOSE (...) returns 1 if the specified windows were closed and 0 otherwise.

OPERATION ON MATRICES

% Creating Matrix

>> a = [1,2,3;4,5,6;7,8,9]

a =

1 2 3

4 5 6

7 8 9

% Creating Matrix

>> b = [7,8,9;4,5,6;1,2,3]

b =

7 8 9

4 5 6

1 2 3

% Addition of two matrices

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 148

>> c = a+b

c =

8 10 12

8 10 12

8 10 12

% Multiplication of two matrices

>> d = a*b

d =

18 24 30

54 69 84

90 114 138

% Multiplication of two matrices

>> e = b*a

e =

102 126 150

66 81 96

30 36 42

% Sample by Sample Multiplication

>> f = a.*b

f =

7 16 27

16 25 36

7 16 27

% Sample by Sample Multiplication

>> g = b.*a

g =

7 16 27

16 25 36

7 16 27

% Sample by Sample

Division >> h = a./b

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 149

h =
0.1429 0.2500 0.3333

1.0000 1.0000 1.0000

7.0000 4.0000 3.0000

% Transpose of a matrix

>> j = transpose (a)

j =

1 4 7

2 5 8

3 6 9

% Eigen Values of a

Matrix >> eig(a)

ans =

16.1168

-1.1168

-0.0000

GENERATION OF BASIC SEQUENCES

%MATLAB program to common continuous time signals

clc;

clear all;

close all;

t=0:.001:1;

f=input('Enter the value of frequency');

a=input('Enter the value of amplitude');

subplot(3,3,1);

y=a*sin(2*pi*f*t);

plot(t,y,'r');

xlabel('time');

ylabel('amplitude');

title('sine wave')

grid on;

subplot(3,3,2);

z=a*cos(2*pi*f*t);

plot(t,z);

xlabel('time');

ylabel('amplitude');

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 150

title('cosine wave')

grid on;

subplot(3,3,3);

s=a*square(2*pi*f*t);

plot(t,s);

xlabel('time');

ylabel('amplitude');

title('square wave')

grid on;

subplot(3,3,4);

plot(t,t);

xlabel('time');

ylabel('amplitude');

title('ramp wave')

grid on;

subplot(3,3,5);

plot(t,a,'r');

xlabel('time');

ylabel('amplitude');

title('unit step wave')

grid on;

WAVEFORMS:

%MATLAB program to common discrete time signals

clc;

clear all;

close all;

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 151

n=0:1:50;

f=input('Enter the value of frequency');

a=input('Enter the value of amplitude');

N=input('Enter the length of unit step');

subplot(3,3,1);

y=a*sin(2*pi*f*n);

stem(n,y,'r');

xlabel('time');

ylabel('amplitude');

title('sine wave')

grid on;

subplot(3,3,2);

z=a*cos(2*pi*f*n);

stem(n,z);

xlabel('time');

ylabel('amplitude');

title('cosine wave')

grid on;

subplot(3,3,3);

s=a*square(2*pi*f*n);

stem(n,s);

xlabel('time');

ylabel('amplitude');

title('square wave')

grid on;

subplot(3,3,4);

stem(n,n);

xlabel('time');

ylabel('amplitude');

title('ramp wave')

grid on;

x=0:N-1;

d=ones(1,N);

subplot(3,3,5);

stem(x,d,'r');

xlabel('time');

ylabel('amplitude');

title('unit step wave')

grid on;

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 152

WAVEFORMS:

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 153

APPENDIX-2

INTRODUCTION TO TMS320C6713

DSK

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 154

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 155

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 156

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 157

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 158

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 159

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 160

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 161

APPENDIX
i.

LABORATORY COURSE ASSESSMENT GUIDELINES

i. The number of experiments/programs/sessions in each laboratory course shall be as per

the curriculum in the scheme of instructions provided by OU.

ii. The students will maintain a separate note book for each laboratory course in which all

the related work would be done.

iii. In each session the students will complete the assigned tasks of process development,

coding, compiling, debugging, linking and executing the programs.

iv. The students will then execute the programme and validate it by obtaining the correct

output for the provided input. The course coordinator will certify the validation in the

same session.

v. The students will submit the record in the next class. The evaluation will be continuous

and not cycle-wise or at semester end.

vi. The internal marks of 25 are awarded in the following manner:

a. Laboratory record - Maximum Marks 15

b. Test and Viva Voce - Maximum Marks 10

vii. Laboratory Record: Each experimental record is evaluated for a score of 50. The rubric

parameters are as follows:
a. Write up format - Maximum Score 20

b. Process development and coding - Maximum Score 10

c. Compile, debug, link and execute program - Maximum Score 15

d. Process validation through input-output - Maximum Score 5

While (a) is assessed at the time of record submission, (b), (c) and (d) are assessed during

the session based on the performance of the student in the laboratory session. Hence if a

student is absent for any laboratory session but completes the program in another session

and subsequently submits the record, it shall be evaluated for a score of 20 and not 50.

viii. The experiment evaluation rubric is therefore as follows :
Parameter Max Score Outstanding Accomplished Developing Beginner Points

Process

Development

and Coding

10

Compilation,

Debugging,

Linking and

Executing

15

Process

Validation 5

Write up format 20

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 162

LABORATORY EXPERIMENT EVALUATION RUBRIC

CATEGORY

(% of Marks)

OUTSTANDING

(75-100%)

ACCOMPLISHED (51-

75%)

DEVELOPING

(26-50%)

BEGINNER

(Upto25%)

Enthusiasm Facial expressions

and body language

generate a strong

interest and

enthusiasm about

the topic in others.

Facial expressions and

body language

sometimes generate a

strong interest and

enthusiasm about the

topic in others.

Facial expressions

and body language

are used to try to

generate enthusiasm,

but seem somewhat

faked.

Very little use of

facial expressions or

body language. Did

not generate much

interest in topic

being presented.

Posture Stands up straight,

looks relaxed and

confident and looks

always towards the

audience during

presentation

Stands up straight and

looks towards the

audience during

presentation and some

times looks

down/reads slides.

Posture not straight

and some times looks

towards the audience

but looks mostly at

reads slides or

downwards

Slouches and/or

does not look

towards the

audience and mostly

reads slides or looks

down during

presentation

Speaks

Clearly and

distinctly

Understand and hear

the speaker all the

time

Understand and hear

the speaker most of the

time

Understand and hear

the speaker only

some times but

speaks too softly

most of the time

Cannot hear or

understand the

speaker at all as

he/she is speaking

too softly

Speaker‟s

slides

Slides as well as text

is formatted with no

spelling errors.

Slides not cluttered

with text. There are

diagrams

Slides are well as text

is formatted with some

spelling errors and

some slides have too

much text . There are

few diagrams

Some slides are not

formatted as well as

text is not formatted

and have spelling

errors. Most slides

have too much text

with very few

diagrams

Each slide looks

different with

different font sizes

and have too much

text in all slides.

There are no

diagrams at all.

Speaker‟s

Communicatio

n about the

topic

The student has

explained the topic

at the level of the

audience very well

The student has

explained the topic

well at the level of

audience but not

completely and

requires to read more

The students has

partly explained the

topic at the level of

the audience but

really needs to read

at lot

The students does

not seem to have

properly

communicated about

the topic at all.

Technical

Content

The student has used

relevant technical

information

exhaustively and

connected it with the

presentation topic

The student has used

relevant technical

information

exhaustedly but failed

to connect it with the

presentation topic

The student has used

relevant technical

information sparingly

and failed to connect

it with the

presentation topic

The presentation is

weak in technical

content with little or

no explicit

connection with the

topic of presentation

Speaker‟s

ability to

answer

questions

Student is able to

accurately answer

almost all questions

posed by audience

about the topic.

Student is able to

accurately answer

most questions posed

by audience about the

topic.

Student is able to

accurately answer

only a few questions

posed by audience

about the topic.

Student is unable to

accurately answer

any questions posed

by audience about

the topic.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 163

ix. The first page of the record will contain the following title sheet:

NAME: ROLL NO.

Exp.

No.
Title of the Program

Date

conducted

Date

Submitted

Process

Development

and Coding

(Max 10)

Compilation

, Debugging,

Linking and

Executing

(Max 15)

Process

Validation

(Max 5)

Write up

format

(Max 20)

Total

Score

(Max 50)

1

2

3

4

5

6

7

8

9

10

11

12

 TOTAL

Date: Signature of Course Coordinator

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 164

x. The 15 marks of laboratory record will be scaled down from the TOTAL of the

assessment sheet.

xi. The test and viva voce will be scored for 10 marks as follows:

Internal Test - 6 marks

Viva Voce / Quiz - 4 marks

xii. Each laboratory course shall have 5 course outcomes.

The proposed course outcomes would be as follows:

On successful completion of the course, the student will acquire the ability to:

1. Apply the design concepts for development of a process and interpret data

2. Demonstrate knowledge of programming environment, compiling, debugging, linking

and executing variety of programs.

3. Demonstrate documentation and presentation of the algorithms / flowcharts / programs in

a record form.

4. Validate the process using known input-output parameters.

5. Employ analytical and logical skills to solve real world problem and demonstrate oral

communication skills.

xiii. The Course coordinators would prepare the assessment matrix in accordance with the

guidelines provided above for the five course outcomes. The scores to be entered against

each of the course outcome would be the sum of the following as obtained from the

assessment sheet in the record:

a. Course Outcome 1: Sum of the scores under ‗Process Development and Coding‘.

b. Course Outcome 2: Sum of the scores under ‗Compilation/Debugging/Linking and

Executing‘.

c. Course Outcome 3: Sum of the scores under ‗Write up format‘.

d. Course Outcome 4: Sum of the scores under ‗Process validation‘.

e. Course Outcome 5: Marks for ‗Internal Test and Viva voce‘.

xiv. Soft copy of the assessment matrix would be provided to the course coordinators.

xv. There may be some laboratory courses based on proprietary software like MATLAB,

AUTOCAD etc. for which the course coordinators and programme coordinators would

formulate appropriate course outcomes.

SYSTEMS AND SIGNAL PROCESSING LAB ECE DEPT

Muffkham Jah College of Engineering and Technology Page 165

MUFFAKHAM JAH COLLEGE OF ENGINEERING AND TECHNOLOGY

Program Outcomes of B.E (ECE) Program:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an
engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, research literature, and analyse complex engineering problems reaching
substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system
components or processes that meet the specified needs with appropriate consideration for the public health and
safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including
design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid
conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and
IT tools including prediction and modeling to complex engineering activities with an understanding of the
limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health,
safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal
and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams,
and in multidisciplinary settings.

 PO10: Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports and design
documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and
management principles and apply these to one‘s own work, as a member and leader in a team, to manage projects
and in multidisciplinary environments.

PO 12: Life-long learning: Recognise the need for, and have the preparation and ability to engage in independent
and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs) of ECE Department, MJCET

PSO1: The ECE Graduates will acquire state of art analysis and design skills in the areas of digital and analog VLSI
Design using modern CAD tools.

PSO2: The ECE Graduates will develop preliminary skills and capabilities necessary for embedded system design
and demonstrate understanding of its societal impact.

PSO3: The ECE Graduates will obtain the knowledge of the working principles of modern communication systems
and be able to develop simulation models of components of a communication system.

PSO4: The ECE Graduates will develop soft skills, aptitude and programming skills to be employable in IT sector.

